Geometric and Topological Thinking in Organic Chemistry

Visualirable Elastic Concrete FI G1V.E) F] R"(V,EI M b 4 ) 1 1 SPACES FORMS FORMS F I G U R E S M O L E C U L A R YxY S T R U C T U R E Fig. 7. A whematic reprc\ciil.iii~iii 01 ihe rnicrrclationship of topological spaces. graphical forms, geometric forms, and geometric figures. The embedding of any of these objects in conventional chemical paradigms produces a model 01' molecular structure. R , Euclidean space (n= 1. 2, 3). For other abbreviations, see Fig. 6 and text. tures. We shall now discuss the nature of this mapping process. 4.4. Transformation from Mathematical Objects to Chemical Objects The transformation from mathematical objects (graphs, forms, figures) of topological geometry and Euclidean geometry may be viewed as the embedding of the mathematical objects into a chemical paradigm (see Fig. 7) to produce models for molecular structures. The paradigm provides the basis for the mapping process C that transforms mathematical objects into chemical objects. The historical pathway to modern chemical structure is related to that shown in Figure 7 except that Euclidean geometric figures (configurational stereochemistry) were accepted as the models for molecular structure before topological geometric forms (conformational stereochemistry).ii51 The historical pathway is summarized in Figure 8 for cycloAbstract VisualizableVisualizable (numberr . reprerentatton

[1]  T. Arai,et al.  New insight into “one-way” photoisomerization of anthrylethylenes: absorption spectra of the trans triplets as intermediates of the isomerization , 1985 .

[2]  P. Wagner Conformational flexibility and photochemistry , 1983 .

[3]  H A Simon,et al.  Discovery, invention, and development: human creative thinking. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[4]  T. Arai,et al.  “One-way” photoisomerization between cis- and trans-olefin. A novel adiabatic process in the excited state , 1983 .

[5]  J. Scaiano Does intersystem crossing in triplet biradicals generate singlets with conformational memory , 1982 .

[6]  N. Turro,et al.  Natural correlation diagrams. A unifying theoretical basis for analysis of n orbital initiated ketone photoreactions , 1981 .

[7]  M. C. Whiting,et al.  Chemistry through models by Colin J. Suckling, Keith E. Suckling and Charles W. Suckling. Pp. 321. Cambridge University Press, Cambridge U.K. and New York. 1978. £15.00 , 1979 .

[8]  Ron Good,et al.  The work of Jean Piaget , 1978 .

[9]  R. Matusch,et al.  Tetra‐tert‐butyltetrahedran , 1978 .

[10]  N. Turro,et al.  Energy acquisition, storage, and release. Photochemistry of cyclic azoalkanes as alternate entries to the energy surfaces interconnecting norbornadiene and quadricyclene , 1977 .

[11]  René Thom,et al.  Structural stability and morphogenesis , 1977, Pattern Recognit..

[12]  K. Mislow,et al.  An Epistemological Note on Chirality , 1976 .

[13]  L. Salem,et al.  Classification of photochemical reactions , 1975 .

[14]  L. Salem Surface crossings and surface touchings in photochemistry , 1974 .

[15]  N. Ivanoff,et al.  Photosensibilisation du 2-butène et du bicyclo-[2.2.1]-heptadiène par la pyrazine en phase gazeuse , 1974 .

[16]  V. Sokolov Topological Ideas in Stereochemistry , 1973 .

[17]  N. Turro,et al.  Thermal rearrangement of Dewar benzenes to benzene triplet states. Examples of spin forbidden nonadiabatic pericyclic reactions , 1973 .

[18]  N. Turro,et al.  Tetramethyl-1,2-dioxetane. Mechanism for an autocatalytic decomposition. Evidence for a quantum chain reaction , 1973 .

[19]  Lionel Salem,et al.  The Electronic Properties of Diradicals , 1972 .

[20]  Lionel Salem,et al.  Die elektronischen Eigenschaften von Diradikalen , 1972 .

[21]  R. Pearson Symmetry rules for chemical reactions , 1971 .

[22]  M. Polanyi The creative imagination. , 1966, Psychological issues.

[23]  Roald Hoffmann,et al.  Conservation of orbital symmetry , 1968 .

[24]  K. Mislow Introduction to stereochemistry , 1966 .

[25]  J. Platt Strong Inference: Certain systematic methods of scientific thinking may produce much more rapid progress than others. , 1964, Science.

[26]  C. Bugg,et al.  An x-ray diffraction study of nonplanar carbanion structures. , 1964 .

[27]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[28]  N. Turro,et al.  PHOTOSENSITIZED CYCLOADDITION REACTIONS1 , 1961 .

[29]  W. G. Dauben,et al.  Photochemical transformations—VIII: The isomerization of Δ2,5-bicyclo[2.2.1]heptadiene to quadricyclo[2.2.1.02,6·03,5]heptane (quadricyclene)☆☆☆★ , 1961 .

[30]  George S. Hammond,et al.  A Correlation of Reaction Rates , 1955 .

[31]  Michael Kasha,et al.  Characterization of electronic transitions in complex molecules , 1950 .

[32]  Alexandroff.,et al.  Elementary concepts in Topology , 1932 .