Strategies Comparison in Link Building Problem

Choosing an effective yet efficient solution to the link building problem means to select which nodes in a network should point a newcomer in order to increase its rank while limiting the cost of this operation (usually related to the number of such in-links). In this paper we consider different heuristics to address the question and we apply them both to Scale-Free (SF) and Erdős-Renyi (ER) networks, showing that the best tradeoff is achieved with the long-distance link approach, i.e. a newcomer node gathering farthest in-links succeeds in improving its position (rank) in the network with a limited cost.

[1]  Vincenza Carchiolo,et al.  Climbing Ranking Position via Long-Distance Backlinks , 2018, IDCS.

[2]  Chunyan Miao,et al.  Trust-based agent community for collaborative recommendation , 2006, AAMAS '06.

[3]  Thorsten Joachims,et al.  In Google We Trust: Users' Decisions on Rank, Position, and Relevance , 2007, J. Comput. Mediat. Commun..

[4]  Franco Scarselli,et al.  Inside PageRank , 2005, TOIT.

[5]  Vladimir Batagelj,et al.  Pajek - Program for Large Network Analysis , 1999 .

[6]  Martin Olsen,et al.  An approximation algorithm for the link building problem , 2012, ArXiv.

[7]  Vincenza Carchiolo,et al.  Long Distance In-Links for Ranking Enhancement , 2018, IDC.

[8]  Vincenza Carchiolo,et al.  The Effect of Topology on the Attachment Process in Trust Networks , 2014, IDC.

[9]  Marcin Sydow Can One Out-Link Change Your PageRank? , 2005, AWIC.

[10]  Junaid Khan,et al.  Web Page Ranking Using Machine Learning Approach , 2015, 2015 Fifth International Conference on Advanced Computing & Communication Technologies.

[11]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[12]  Clara Simón de Blas,et al.  Combined social networks and data envelopment analysis for ranking , 2018, Eur. J. Oper. Res..

[13]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[14]  Xin Liu Towards Context-Aware Social Recommendation via Trust Networks , 2013, WISE.

[15]  Pu-Jen Cheng,et al.  Improving Ranking Consistency for Web Search by Leveraging a Knowledge Base and Search Logs , 2015, CIKM.

[16]  Shlomo Moran,et al.  SALSA: the stochastic approach for link-structure analysis , 2001, TOIS.

[17]  Aleksandar Kuzmanovic,et al.  How to Improve Your Search Engine Ranking: Myths and Reality , 2014, TWEB.

[18]  Vicente P. Guerrero-Bote,et al.  A further step forward in measuring journals' scientific prestige: The SJR2 indicator , 2012, J. Informetrics.

[19]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[20]  Konstantin Avrachenkov,et al.  The Effect of New Links on Google Pagerank , 2006 .

[21]  Vincenza Carchiolo,et al.  Dealing with the Best Attachment Problem via Heuristics , 2016, IDC.

[22]  Vincenza Carchiolo,et al.  Network size and topology impact on trust-based ranking , 2017, Int. J. Bio Inspired Comput..

[23]  Jérôme Kunegis,et al.  Preferential attachment in online networks: measurement and explanations , 2013, WebSci.

[24]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[25]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[26]  Stéphane Gaubert,et al.  Ergodic Control and Polyhedral Approaches to PageRank Optimization , 2010, IEEE Transactions on Automatic Control.