Mutational escape prevention by combination of four neutralizing antibodies that target RBD conserved regions and stem helix

[1]  Jianwei Zhu,et al.  Recombinant Decoy Exhibits Broad Protection against Omicron and Resistance Potential to Future Variants , 2022, Pharmaceuticals.

[2]  Fei Shao,et al.  BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection , 2022, Nature.

[3]  Junfen Fan,et al.  COVID-19 vaccine development: milestones, lessons and prospects , 2022, Signal Transduction and Targeted Therapy.

[4]  Jianwei Zhu,et al.  Efficient Neutralization of SARS-CoV-2 Omicron and Other VOCs by a Broad Spectrum Antibody 8G3 , 2022, bioRxiv.

[5]  J. Qu,et al.  Neutralizing activity of BBIBP-CorV vaccine-elicited sera against Beta, Delta and other SARS-CoV-2 variants of concern , 2022, Nature communications.

[6]  V. Sintchenko,et al.  Resistance Mutations in SARS-CoV-2 Delta Variant after Sotrovimab Use , 2022, The New England journal of medicine.

[7]  D. Burton,et al.  A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection , 2022, Science Translational Medicine.

[8]  D. Burton,et al.  A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection , 2022, bioRxiv.

[9]  P. Maes,et al.  Considerable escape of SARS-CoV-2 Omicron to antibody neutralization , 2021, Nature.

[10]  Fei Shao,et al.  Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies , 2021, bioRxiv.

[11]  M. Kraemer,et al.  Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa , 2021, Nature.

[12]  Liyuan Liu,et al.  Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2 , 2021, Nature.

[13]  D. Vézina,et al.  Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 emerging variants of concern , 2021, Cell Reports.

[14]  M. Farzan,et al.  Mechanisms of SARS-CoV-2 entry into cells , 2021, Nature reviews. Molecular cell biology.

[15]  Gang Li,et al.  Broad ultra-potent neutralization of SARS-CoV-2 variants by monoclonal antibodies specific to the tip of RBD , 2021, bioRxiv.

[16]  Philip L. Tzou,et al.  The biological and clinical significance of emerging SARS-CoV-2 variants , 2021, Nature Reviews Genetics.

[17]  M. Beltramello,et al.  Broad betacoronavirus neutralization by a stem helix–specific human antibody , 2021, Science.

[18]  D. Vézina,et al.  Structural Basis and Mode of Action for Two Broadly Neutralizing Antibodies Against SARS-CoV-2 Emerging Variants of Concern , 2021, bioRxiv.

[19]  L. Stamatatos,et al.  Live imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy , 2021, Immunity.

[20]  M. Beltramello,et al.  Broad sarbecovirus neutralization by a human monoclonal antibody , 2021, Nature.

[21]  Chaim A. Schramm,et al.  Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants , 2021, Science.

[22]  H. van Bakel,et al.  SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2 , 2021, Cell.

[23]  C. Swanton,et al.  Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination , 2021, The Lancet.

[24]  A. Walls,et al.  Structural basis for broad coronavirus neutralization , 2021, Nature Structural & Molecular Biology.

[25]  Ilya J. Finkelstein,et al.  Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes , 2021, Science.

[26]  L. Stamatatos,et al.  Live imaging of SARS-CoV-2 infection in mice reveals neutralizing antibodies require Fc function for optimal efficacy , 2021, bioRxiv.

[27]  M. Beltramello,et al.  N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 , 2021, Cell.

[28]  D. Baker,et al.  Quadrivalent influenza nanoparticle vaccines induce broad protection , 2021, Nature.

[29]  I. Chaiken,et al.  The Case for S2: The Potential Benefits of the S2 Subunit of the SARS-CoV-2 Spike Protein as an Immunogen in Fighting the COVID-19 Pandemic , 2021, Frontiers in Immunology.

[30]  D. Ho,et al.  Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 , 2021, Nature.

[31]  C. Creech,et al.  SARS-CoV-2 Vaccines. , 2021, JAMA.

[32]  L. Walker,et al.  Prolonged evolution of the human B cell response to SARS-CoV-2 infection , 2021, Science Immunology.

[33]  D. Ho,et al.  Antibody Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7 , 2021, bioRxiv.

[34]  J. Bloom,et al.  Prospective mapping of viral mutations that escape antibodies used to treat COVID-19 , 2021, Science.

[35]  M. Beltramello,et al.  N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 , 2021, bioRxiv.

[36]  D. Ho,et al.  Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite , 2021, bioRxiv.

[37]  Jonathan R. McDaniel,et al.  Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes in COVID-19 convalescent plasma , 2020, bioRxiv.

[38]  J. Bloom,et al.  Prospective mapping of viral mutations that escape antibodies used to treat COVID-19 , 2020, bioRxiv.

[39]  Lisa E. Gralinski,et al.  Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2 , 2020, Cell.

[40]  Lisa E. Gralinski,et al.  Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Walls, Fiala et al. , 2020 .

[41]  A. Casto,et al.  Dynamics of Neutralizing Antibody Titers in the Months After Severe Acute Respiratory Syndrome Coronavirus 2 Infection , 2020, The Journal of infectious diseases.

[42]  F. Krammer SARS-CoV-2 vaccines in development , 2020, Nature.

[43]  M. Beltramello,et al.  Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology , 2020, Cell.

[44]  Caizheng Yu,et al.  Linear epitope landscape of the SARS-CoV-2 Spike protein constructed from 1,051 COVID-19 patients , 2020, Cell Reports.

[45]  L. Pirofski,et al.  A Replication-Competent Vesicular Stomatitis Virus for Studies of SARS-CoV-2 Spike-Mediated Cell Entry and Its Inhibition , 2020, Cell Host & Microbe.

[46]  Yiwei Cao,et al.  Developing a Fully Glycosylated Full-Length SARS-CoV-2 Spike Protein Model in a Viral Membrane , 2020, The journal of physical chemistry. B.

[47]  David Robertson,et al.  CoV-GLUE: A Web Application for Tracking SARS-CoV-2 Genomic Variation , 2020 .

[48]  R. Welsh,et al.  Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail , 2020, Science.

[49]  G. Atwal,et al.  Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies , 2020, Science.

[50]  Nathan R Kern,et al.  Developing a Fully-glycosylated Full-length SARS-CoV-2 Spike Protein Model in a Viral Membrane , 2020, bioRxiv.

[51]  L. Pirofski,et al.  A replication-competent vesicular stomatitis virus for studies of SARS-CoV-2 spike-mediated cell entry and its inhibition , 2020, bioRxiv.

[52]  Shaun Rawson,et al.  Distinct conformational states of SARS-CoV-2 spike protein , 2020, Science.

[53]  U. Qazi,et al.  COVID-19 Vaccine , 2020, Advances in Infectious Diseases.

[54]  G. Herrler,et al.  SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor , 2020, Cell.

[55]  Young-Jun Park,et al.  Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein , 2020, Cell.

[56]  D. Veesler,et al.  Structural insights into coronavirus entry , 2019, Advances in Virus Research.

[57]  U. Baxa,et al.  Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses , 2018, Nature Immunology.

[58]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[59]  S. Whelan,et al.  Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. , 1995, Proceedings of the National Academy of Sciences of the United States of America.