Randomly-oriented Sequential Modeling Design for Complex Process

[1]  Swagatam Das,et al.  Multi-sensor data fusion using support vector machine for motor fault detection , 2012, Inf. Sci..

[2]  Guangyao Li,et al.  A comparative study of boundary-based intelligent sampling approaches for nonlinear optimization , 2011, Appl. Soft Comput..

[3]  Julio R. Banga,et al.  An evolutionary method for complex-process optimization , 2010, Comput. Oper. Res..

[4]  Loren Paul Rees,et al.  A sequential-design metamodeling strategy for simulation optimization , 2004, Comput. Oper. Res..

[5]  Shiliang Sun,et al.  A review of optimization methodologies in support vector machines , 2011, Neurocomputing.

[6]  Amaro G. Barreto,et al.  A new approach for sequential experimental design for model discrimination , 2006 .

[7]  M. Isabel Reis dos Santos,et al.  Sequential experimental designs for nonlinear regression metamodels in simulation , 2008, Simul. Model. Pract. Theory.

[8]  Sounak Chakraborty,et al.  Bayesian multiple response kernel regression model for high dimensional data and its practical applications in near infrared spectroscopy , 2012, Comput. Stat. Data Anal..

[9]  Marco Gamba,et al.  Support vector machines to model presence/absence of Alburnus alburnus alborella (Teleostea, Cyprinidae) in North-Western Italy: comparison with other machine learning techniques. , 2012, Comptes rendus biologies.

[10]  Okan Ozgonenel,et al.  Artificial neural network (ANN) approach for modeling Zn(II) adsorption from leachate using a new biosorbent , 2011 .