Evaluating a local genetic algorithm as context-independent local search operator for metaheuristics

Local genetic algorithms have been designed with the aim of providing effective intensification. One of their most outstanding features is that they may help classical local search-based metaheuristics to improve their behavior. This paper focuses on experimentally investigating the role of a recent approach, the binary-coded local genetic algorithm (BLGA), as context-independent local search operator for three local search-based metaheuristics: random multi-start local search, iterated local search, and variable neighborhood search. These general-purpose models treat the objective function as a black box, allowing the search process to be context-independent. The results show that BLGA may provide an effective and efficient intensification, not only allowing these three metaheuristics to be enhanced, but also predicting successful applications in other local search-based algorithms. In addition, the empirical results reported here reveal relevant insights on the behavior of classical local search methods when they are performed as context-independent optimizers in these three well-known metaheuristics.

[1]  K. Katayama,et al.  A Variant k-opt Local Search Heuristic for Binary Quadratic Programming , 2001 .

[2]  Marcus Randall,et al.  Search Space Reduction as a Tool for Achieving Intensification and Diversification in Ant Colony Optimisation , 2006, IEA/AIE.

[3]  Thomas Stützle,et al.  Stochastic Local Search , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[4]  Günther R. Raidl,et al.  A Unified View on Hybrid Metaheuristics , 2006, Hybrid Metaheuristics.

[5]  P. Merz,et al.  Memetic algorithms for the unconstrained binary quadratic programming problem. , 2004, Bio Systems.

[6]  María José del Jesús,et al.  KEEL: a software tool to assess evolutionary algorithms for data mining problems , 2008, Soft Comput..

[7]  Kenneth A. De Jong,et al.  Using Problem Generators to Explore the Effects of Epistasis , 1997, ICGA.

[8]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[9]  Hitoshi Iba,et al.  Accelerating Differential Evolution Using an Adaptive Local Search , 2008, IEEE Transactions on Evolutionary Computation.

[10]  Carlos García-Martínez,et al.  A Local Genetic Algorithm for Binary-Coded Problems , 2006, PPSN.

[11]  Shigenobu Kobayashi,et al.  Hybridization of genetic algorithm and local search in multiobjective function optimization: recommendation of GA then LS , 2006, GECCO '06.

[12]  Zbigniew Michalewicz,et al.  Advances in Metaheuristics for Hard Optimization (Natural Computing Series) , 2007 .

[13]  Moritoshi Yasunaga,et al.  Implementation of an Effective Hybrid GA for Large-Scale Traveling Salesman Problems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[14]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[15]  Agostinho C. Rosa,et al.  Self-adjusting the intensity of assortative mating in genetic algorithms , 2008, Soft Comput..

[16]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[17]  F. Oppacher,et al.  Hybridized crossover-based search techniques for program discovery , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[18]  Shengxiang Yang,et al.  A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems , 2009, Soft Comput..

[19]  Christian Blum,et al.  ACO Applied to Group Shop Scheduling: A Case Study on Intensification and Diversification , 2002, Ant Algorithms.

[20]  Lakhmi C. Jain,et al.  Knowledge-Based Intelligent Information and Engineering Systems , 2004, Lecture Notes in Computer Science.

[21]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[22]  Zbigniew Michalewicz,et al.  Advances in Metaheuristics for Hard Optimization , 2008, Advances in Metaheuristics for Hard Optimization.

[23]  Kengo Katayama,et al.  An Evolutionary Approach for the Maximum Diversity Problem , 2005 .

[24]  Ioannis B. Theocharis,et al.  Microgenetic algorithms as generalized hill-climbing operators for GA optimization , 2001, IEEE Trans. Evol. Comput..

[25]  Endre Boros,et al.  Local search heuristics for Quadratic Unconstrained Binary Optimization (QUBO) , 2007, J. Heuristics.

[26]  Thomas Stützle,et al.  Iterated Robust Tabu Search for MAX-SAT , 2003, Canadian Conference on AI.

[27]  Celso C. Ribeiro,et al.  Greedy Randomized Adaptive Search Procedures , 2003, Handbook of Metaheuristics.

[28]  Günther R. Raidi A unified view on hybrid metaheuristics , 2006 .

[29]  Atsuko Mutoh,et al.  Efficient Real-Coded Genetic Algorithms with Flexible-Step Crossover , 2006 .

[30]  Surya B. Yadav,et al.  The Development and Evaluation of an Improved Genetic Algorithm Based on Migration and Artificial Selection , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[31]  Franz Rendl,et al.  A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..

[32]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[33]  Francisco Herrera,et al.  Gradual distributed real-coded genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[34]  Francisco Herrera,et al.  Real-Coded Memetic Algorithms with Crossover Hill-Climbing , 2004, Evolutionary Computation.

[35]  B. Dunham,et al.  Design by natural selection , 1963 .

[36]  Pablo Moscato,et al.  Memetic algorithms: a short introduction , 1999 .

[37]  Rafael Martí,et al.  Context-Independent Scatter and Tabu Search for Permutation Problems , 2005, INFORMS J. Comput..

[38]  Patrick Siarry,et al.  Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions , 2003, Eur. J. Oper. Res..

[39]  W. Spears,et al.  On the Virtues of Parameterized Uniform Crossover , 1995 .

[40]  Thomas Stützle,et al.  Ant Colony Optimization Theory , 2004 .

[41]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[42]  J. M. Moreno-Vega,et al.  Advanced Multi-start Methods , 2010 .

[43]  Hisao Ishibuchi,et al.  Use of biased neighborhood structures in multiobjective memetic algorithms , 2009, Soft Comput..

[44]  Carlos García-Martínez,et al.  Local Search Based on Genetic Algorithms , 2008, Advances in Metaheuristics for Hard Optimization.

[45]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[46]  Anne Auger,et al.  Performance evaluation of an advanced local search evolutionary algorithm , 2005, 2005 IEEE Congress on Evolutionary Computation.

[47]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[48]  Cheng-Yan Kao,et al.  An evolutionary algorithm for large traveling salesman problems , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[49]  Dirk Thierens,et al.  Population-Based Iterated Local Search: Restricting Neighborhood Search by Crossover , 2004, GECCO.

[50]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[51]  El-Ghazali Talbi,et al.  A Taxonomy of Hybrid Metaheuristics , 2002, J. Heuristics.

[52]  R. Iman,et al.  Approximations of the critical region of the fbietkan statistic , 1980 .

[53]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[54]  Nenad Mladenovic,et al.  Local and variable neighborhood search for the k-cardinality subgraph problem , 2008, J. Heuristics.

[55]  John E. Beasley,et al.  Heuristic algorithms for the unconstrained binary quadratic programming problem , 1998 .

[56]  César Hervás-Martínez,et al.  JCLEC: a Java framework for evolutionary computation , 2007, Soft Comput..

[57]  Alexander H. G. Rinnooy Kan,et al.  A stochastic method for global optimization , 1982, Math. Program..

[58]  Nicolas G. Fournier,et al.  Modelling the dynamics of stochastic local search on k-sat , 2007, J. Heuristics.

[59]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[60]  Carlos García-Martínez,et al.  Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: Overview and progress report , 2010, Comput. Oper. Res..

[61]  Martin V. Butz,et al.  Substructural Neighborhoods for Local Search in the Bayesian Optimization Algorithm , 2006, PPSN.

[62]  Francisco Herrera,et al.  A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability , 2009, Soft Comput..

[63]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[64]  Thomas Bäck,et al.  Evolutionary Algorithms: The Role of Mutation and Recombination , 2000 .

[65]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[66]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[67]  Sang-Wook Lee,et al.  A New Memetic Algorithm Using Particle Swarm Optimization and Genetic Algorithm , 2006, KES.

[68]  Terry Jones,et al.  Crossover, Macromutationand, and Population-Based Search , 1995, ICGA.

[69]  Lawrence Davis,et al.  Bit-Climbing, Representational Bias, and Test Suite Design , 1991, ICGA.

[70]  C. Fernandes,et al.  A study on non-random mating and varying population size in genetic algorithms using a royal road function , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[71]  Sanghamitra Bandyopadhyay,et al.  Genetic operators for combinatorial optimization in TSP and microarray gene ordering , 2007, Applied Intelligence.

[72]  Ichiro Iimura,et al.  A-034 Application of Genetic Recombination to Genetic Local Search in TSP , 2005 .

[73]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[74]  Min Kong,et al.  A new ant colony optimization algorithm for the multidimensional Knapsack problem , 2008, Comput. Oper. Res..

[75]  Carlos García-Martínez,et al.  Global and local real-coded genetic algorithms based on parent-centric crossover operators , 2008, Eur. J. Oper. Res..

[76]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[77]  Rafael Martí Multi-Start Methods , 2003, Handbook of Metaheuristics.

[78]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[79]  David W. Corne,et al.  A Real Coded Genetic Algorithm with an Explorer and an Exploiter Populations , 1997, ICGA.

[80]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[81]  David E. Goldberg,et al.  Designing Competent Mutation Operators Via Probabilistic Model Building of Neighborhoods , 2004, GECCO.

[82]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[83]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[84]  Michel Gendreau,et al.  Metaheuristics in Combinatorial Optimization , 2022 .