Debris-flow susceptibility analysis using fluvio-morphological parameters and data mining: application to the Central-Eastern Pyrenees

Based on debris-flow inventories and using a geographical information system, the susceptibility models presented here take into account fluvio-morphologic parameters, gathered for every first-order catchment. Data mining techniques on the morphometric parameters are used, to work out and test three different models. The first model is a logistic regression analysis based on weighting the parameters. The other two are classification trees, which are rather novel susceptibility models. These techniques enable gathering the necessary data to evaluate the performance of the models tested, with and without optimization. The analysis was performed in the Catalan Pyrenees and covered an area of more than 4,000 km2. Results related to the training dataset show that the optimized models performance lie within former reported range, in terms of AUC, although closer to the lowest end (near 70 %). When the models are applied to the test set, the quality of most results decreases. However, out of the three different models, logistic regression seems to offer the best prediction, as training and test sets results are very similar, in terms of performance. Trees are better at extracting laws from a training set, but validation through a test set gives results unacceptable for a prediction at regional scale. Although omitting parameters in geology or vegetation, fluvio-morphologic models based on data mining, can be used in the framework of a regional debris-flow susceptibility assessment in areas where only a digital elevation model is available.

[1]  D. Steinberg CART: Classification and Regression Trees , 2009 .

[2]  Francesco Gentile,et al.  Debris-flow risk analysis in south Gargano watersheds (Southern-Italy) , 2008 .

[3]  C. Westen,et al.  Analysis of landslide inventories for accurate prediction of debris-flow source areas. , 2010 .

[4]  John P. Wilson,et al.  Terrain analysis : principles and applications , 2000 .

[5]  J. Corominas,et al.  Assessment of shallow landslide susceptibility by means of multivariate statistical techniques , 2001 .

[6]  M. Jakob A size classification for debris flows , 2005 .

[7]  Maurice Pardé La formidable crue d'octobre 1940 dans les Pyrénées-Orientales , 1941 .

[8]  P. Frattini,et al.  Comparing models of debris-flow susceptibility in the alpine environment , 2008 .

[9]  Marta Guinau,et al.  A feasible methodology for landslide susceptibility assessment in developing countries: A case-study of NW Nicaragua after Hurricane Mitch , 2005 .

[10]  J. Muñoz Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section , 1992 .

[11]  D. Tarboton,et al.  Advances in the mapping of flow networks from digital elevation data , 2001 .

[12]  Willy A. Lacerda,et al.  Landslide susceptibility in a mountainous geoecosystem, Tijuca Massif, Rio de Janeiro: The role of morphometric subdivision of the terrain , 2007 .

[13]  Andrea Taramelli,et al.  An example of debris-flows hazard modeling using GIS , 2004 .

[14]  M. Hürlimann,et al.  Description and analysis of the debris flows occurred during 2008 in the Eastern Pyrenees , 2010 .

[15]  J. Blahůt,et al.  Spatial agreement of predicted patterns in landslide susceptibility maps , 2011 .

[16]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[17]  E. F. Hollyday Drainage basin characteristics from ERTS data , 1975 .

[18]  D. Tarboton A new method for the determination of flow directions and upslope areas in grid digital elevation models , 1997 .

[19]  P. Burrough,et al.  Principles of geographical information systems , 1998 .

[20]  Giovanni B. Crosta,et al.  Techniques for evaluating the performance of landslide susceptibility models , 2010 .

[21]  David G. Tarboton,et al.  On the extraction of channel networks from digital elevation data , 1991 .

[22]  John F. O'Callaghan,et al.  The extraction of drainage networks from digital elevation data , 1984, Comput. Vis. Graph. Image Process..

[23]  P. Reichenbach,et al.  Probabilistic landslide hazard assessment at the basin scale , 2005 .

[24]  Philippe Coussot,et al.  Recognition, classification and mechanical description of debris flows , 1996 .

[25]  J. Coe,et al.  Landslide susceptibility from topography in Guatemala , 2004 .

[26]  M. Jakob,et al.  Debris-flow Hazards and Related Phenomena , 2005 .

[27]  W. Z. Savage,et al.  Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning , 2008 .

[28]  José Moya,et al.  Validation and evaluation of two multivariate statistical models for predictive shallow landslide susceptibility mapping of the Eastern Pyrenees (Spain) , 2010 .

[29]  P. Reichenbach,et al.  GIS techniques and statistical models in evaluating landslide hazard , 1991 .

[30]  Jordi Corominas,et al.  The Barranco de Arás flood of 7 August 1996 (Biescas, Central Pyrenees, Spain) , 1999 .

[31]  R. Guthrie,et al.  Work, persistence, and formative events: The geomorphic impact of landslides , 2007 .

[32]  S. Schumm EVOLUTION OF DRAINAGE SYSTEMS AND SLOPES IN BADLANDS AT PERTH AMBOY, NEW JERSEY , 1956 .

[33]  P. Reichenbach,et al.  Estimating the quality of landslide susceptibility models , 2006 .

[34]  R. J. Pike A bibliography of terrain modeling (geomorphometry), the quantitative representation of topography: supplement 4.0 , 2002 .

[35]  Markus N. Zimmermann,et al.  The 1987 debris flows in Switzerland: documentation and analysis , 1993 .

[36]  L. Ermini,et al.  Landslide hazard and risk mapping at catchment scale in the Arno River basin , 2005 .

[37]  R. Chorley,et al.  Illustrating the Laws of Morphometry , 1957, Geological Magazine.

[38]  Cristina Baeza Adell Evaluación de las condiciones de rotura y la movilidad de los deslizamientos superficiales mediante el uso de técnicas de anáisis multivariante , 1994 .

[39]  Andrea G. Fabbri,et al.  Validation of Spatial Prediction Models for Landslide Hazard Mapping , 2003 .

[40]  T. Chou,et al.  The knowledge rules of debris flow event: A case study for investigation Chen Yu Lan River, Taiwan , 2008 .

[41]  J. Corominas,et al.  A GIS-Based Multivariate Statistical Analysis for Shallow Landslide Susceptibility Mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain) , 2003 .

[42]  J. Muñoz,et al.  Asymmetric exhumation across the Pyrenean orogen: implications for the tectonic evolution of a collisional orogen , 1999 .

[43]  D. Montgomery,et al.  Source areas, drainage density, and channel initiation , 1989 .

[44]  S. K. Jenson,et al.  Extracting topographic structure from digital elevation data for geographic information-system analysis , 1988 .

[45]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[46]  R. Iverson,et al.  U. S. Geological Survey , 1967, Radiocarbon.

[47]  J. Cantos,et al.  Climas y tiempos de España , 2001 .

[48]  C. Chen,et al.  Morphometric analysis of debris flows and their source areas using GIS , 2011 .

[49]  Alberto González,et al.  Validation of Landslide Susceptibility Maps; Examples and Applications from a Case Study in Northern Spain , 2003 .

[50]  D. Montgomery,et al.  Where do channels begin? , 1988, Nature.

[51]  Shiuan Wan,et al.  A knowledge-based decision support system to analyze the debris-flow problems at Chen-Yu-Lan River, Taiwan , 2009, Knowl. Based Syst..

[52]  Eibe Frank,et al.  Logistic Model Trees , 2003, ECML.

[53]  Mark A. Melton,et al.  The Geomorphic and Paleoclimatic Significance of Alluvial Deposits in Southern Arizona , 1965, The Journal of Geology.

[54]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[55]  J. N. Hutchinson,et al.  A review of the classification of landslides of the flow type , 2001 .

[56]  Oldrich Hungr,et al.  Quantitative analysis of debris torrent hazards for design of remedial measures , 1984 .

[57]  A. Zannoni,et al.  Relations between rainfall and triggering of debris-flow: case study of Cancia (Dolomites, Northeastern Italy) , 2003 .

[58]  C. E. Rodríguez-Pineda,et al.  Probabilistic Landslide Hazard for El Salvador , 2013 .

[59]  Ecors Team The ECORS deep reflection seismic survey across the Pyrenees , 1988, Nature.

[60]  A. Teixell Crustal structure and orogenic material budget in the west central Pyrenees , 1998 .

[61]  Dieter Rickenmann,et al.  Empirical Relationships for Debris Flows , 1999 .

[62]  S. Leroueil,et al.  The Varnes classification of landslide types, an update , 2014, Landslides.

[63]  Tim Davies,et al.  Identification of alluvial fans susceptible to debris-flow hazards , 2011 .

[64]  Richard A. Olshen,et al.  CART: Classification and Regression Trees , 1984 .