Unsupervised Seismic Random Noise Attenuation Based on Deep Convolutional Neural Network

Random noise attenuation is one of the most essential steps in seismic signal processing. We propose a novel approach to attenuate seismic random noise based on deep convolutional neural network (CNN) in an unsupervised learning manner. First, normalization and patch sampling are required to build training dataset and test dataset from raw noisy data. Instead of using synthetic noise-free data or denoised results via conventional methods as training labels, we adopt only the training set constructed from the raw noisy data as the input and design a robust deep CNN that just relies on the noisy input to learn the hidden features. The cross-entropy is chosen as the error criterion for establishing the cost function, which is minimized by the back-propagation algorithm to obtain the optimized parameters of the network. Then, we can reconstruct all patches of the test dataset via the optimized CNN. After patching processing and inverse normalization, the final denoised result can be obtained from reconstructed patches. Experimental tests on synthetic and real data demonstrate the effectiveness and superiority of the proposed method compared with state-of-the-art denoising methods.

[1]  Lei Zhang,et al.  Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising , 2016, IEEE Transactions on Image Processing.

[2]  Cheng-Yuan Liou,et al.  Autoencoder for words , 2014, Neurocomputing.

[3]  Mokhtar Mohammadi,et al.  Seismic Random Noise Attenuation Using Synchrosqueezed Wavelet Transform and Low-Rank Signal Matrix Approximation , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Yang Liu,et al.  Seislet transform and seislet frame , 2010 .

[5]  Wuyang Yang,et al.  Deep learning for ground-roll noise attenuation , 2018 .

[6]  Douglas Alsdorf,et al.  Noise reduction in seismic data using Fourier correlation coefficient filtering , 1997 .

[7]  Ebrahim Ghaderpour,et al.  Antileakage least-squares spectral analysis for seismic data regularization and random noise attenuation , 2018 .

[8]  Sergey Fomel Local seismic attributes , 2006 .

[9]  Mauricio D. Sacchi,et al.  Interpolation and denoising of high-dimensional seismic data by learning a tight frame , 2015 .

[10]  Necati Gulunay,et al.  FXDECON and complex wiener prediction filter , 1986 .

[11]  Zhu Han,et al.  Seismic data denoising by deep-residual networks , 2018, SEG technical program expanded abstracts.

[12]  Dong Yu,et al.  Deep Learning: Methods and Applications , 2014, Found. Trends Signal Process..

[13]  Yike Liu,et al.  Noise reduction by vector median filtering , 2013 .

[14]  Lina Liu,et al.  Sparse graph-regularized dictionary learning for suppressing random seismic noiseGraph dictionary learning , 2018 .

[15]  Yang Liu,et al.  Streaming orthogonal prediction filter in t-x domain for random noise attenuation , 2017 .

[16]  Dinghui Yang,et al.  Noise reduction and drift removal using least-squares support vector regression with the implicit bias term , 2010 .

[17]  M. Sacchi,et al.  Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .

[18]  Shuaiqi Liu,et al.  Hankel Low-Rank Approximation for Seismic Noise Attenuation , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[19]  L. Canales Random Noise Reduction , 1984 .

[20]  Zhou Yu,et al.  Attenuation of noise and simultaneous source interference using wavelet denoising , 2017 .

[22]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[23]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[24]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[25]  Vincenzo Lipari,et al.  Interpolation and Denoising of Seismic Data using Convolutional Neural Networks , 2019, ArXiv.

[26]  Ghassan AlRegib,et al.  Successful leveraging of image processing and machine learning in seismic structural interpretation: A review , 2018, The Leading Edge.

[27]  Yushu Zhang,et al.  Noise attenuation for seismic image using a deep residual learning , 2018 .

[28]  Mauricio D. Sacchi,et al.  Robust reduced-rank filtering for erratic seismic noise attenuation , 2015 .

[29]  Xishuang Dong,et al.  A scalable deep learning platform for identifying geologic features from seismic attributes , 2017 .

[30]  Douglas Kline,et al.  Revisiting squared-error and cross-entropy functions for training neural network classifiers , 2005, Neural Computing & Applications.

[31]  Anil M. Cheriyadat,et al.  Unsupervised Feature Learning for Aerial Scene Classification , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[32]  W. Harry Mayne,et al.  Common Reflection Point Horizontal Data Stacking Techniques , 1962 .

[33]  Benfeng Wang,et al.  Simultaneous seismic data interpolation and denoising with a new adaptive method based on dreamlet transform , 2015 .

[34]  Yangkang Chen,et al.  Seismic Noise Attenuation Using Unsupervised Sparse Feature Learning , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Yangkang Chen,et al.  Double Sparsity Dictionary for Seismic Noise Attenuation , 2016 .

[36]  Qiang Zhao,et al.  Signal-Preserving Erratic Noise Attenuation via Iterative Robust Sparsity-Promoting Filter , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[37]  S. Mostafa Mousavi,et al.  Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding , 2016 .

[38]  Matt Hall,et al.  Distributed collaborative prediction: Results of the machine learning contest , 2017 .

[39]  Indranil Pan,et al.  Seismic facies analysis using machine learning , 2018, Geophysics.

[40]  R. Neelamani,et al.  Coherent and random noise attenuation using the curvelet transform , 2008 .

[41]  Stanley Osher,et al.  Monte Carlo data-driven tight frame for seismic data recovery , 2016 .

[42]  J. Claerbout,et al.  Lateral prediction for noise attenuation by t-x and f-x techniques , 1995 .

[43]  Felix J. Herrmann,et al.  Deep-convolutional neural networks in prestack seismic: Two exploratory examples , 2018, SEG Technical Program Expanded Abstracts 2018.

[44]  Yurong Liu,et al.  A survey of deep neural network architectures and their applications , 2017, Neurocomputing.

[45]  Jürgen Schmidhuber,et al.  Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction , 2011, ICANN.

[46]  Stanley Osher,et al.  Noise attenuation in a low-dimensional manifold , 2017, GEOPHYSICS.

[47]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[48]  Mauricio D. Sacchi,et al.  Multicomponent f-x seismic random noise attenuation via vector autoregressive operators , 2012 .

[49]  A. C. Faul,et al.  Bayesian Feature Learning for Seismic Compressive Sensing and Denoising , 2017 .

[50]  Guochang Liu,et al.  Stacking seismic data using local correlation , 2009 .

[51]  Yangkang Chen,et al.  An efficient and effective common reflection surface stacking approach using local similarity and plane-wave flattening , 2015 .

[52]  Geoffrey E. Hinton,et al.  Autoencoders, Minimum Description Length and Helmholtz Free Energy , 1993, NIPS.

[53]  Walter Söllner,et al.  A method of combining coherence-constrained sparse coding and dictionary learning for denoising , 2017 .

[54]  Yangkang Chen,et al.  Damped multichannel singular spectrum analysis for 3D random noise attenuation , 2016 .

[55]  Guangmin Hu,et al.  Unsupervised seismic facies analysis via deep convolutional autoencoders , 2018 .

[56]  Necati Gulunay,et al.  Signal leakage in f-x deconvolution algorithms , 2017 .

[57]  Wenchao Chen,et al.  Random-noise suppression in seismic data: What can deep learning do? , 2018, SEG Technical Program Expanded Abstracts 2018.