Compressing isosurfaces generated with marching cubes

The marching cubes (MC) algorithm has been widely used for isosurface generation in volume rendering. However, it usually generates an extensive amount of geometric data that requires enormous storage and communication bandwidth. This work presents a geometry compression algorithm that employs several geometric properties of the MC algorithm to reduce the number of bits of generated triangle data. The proposed algorithm attempts to encode each triangle-vertex according to the index of its containing cube, the index of its containing cube-edge, and its relative position on the containing cubeedge. Furthermore, the connectivity among triangle-vertices in a cube is encoded by the signs of its vertices, computed by comparing their values to the isosurface threshold. Both theoretical analysis and experimental results show that the proposed algorithm can achieve an excellent compression ratio.

[1]  Jarek Rossignac,et al.  An Edgebreaker-based efficient compression scheme for regular meshes , 2001, Comput. Geom..

[2]  Jarek Rossignac,et al.  Guaranteed 3.67v bit encoding of planar triangle graphs , 1999, CCCG.

[3]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[4]  Renato Pajarola,et al.  SQUEEZE: fast and progressive decompression of triangle meshes , 2000, Proceedings Computer Graphics International 2000.

[5]  Mike M. Chow Optimized geometry compression for real-time rendering , 1997 .

[6]  Jarek Rossignac,et al.  Edgebreaker compression and Wrap&Zip decoding of the connectivity of triangle meshes , 1999 .

[7]  Paolo Cignoni,et al.  Reconstruction of topologically correct and adaptive trilinear isosurfaces , 2000, Comput. Graph..

[8]  Jarek Rossignac,et al.  An Edgebreaker-Based Efficient Compression Scheme for Connectivity of Regular Meshes , 2000, CCCG.

[9]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[10]  Jianping Li,et al.  An efficiency enhanced isosurface generation algorithm for volume visualization , 1998, The Visual Computer.

[11]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[12]  Gabriel Taubin,et al.  Progressive forest split compression , 1998, SIGGRAPH.

[13]  Dinesh Manocha,et al.  Appearance-preserving simplification , 1998, SIGGRAPH.

[14]  Paolo Cignoni,et al.  Speeding Up Isosurface Extraction Using Interval Trees , 1997, IEEE Trans. Vis. Comput. Graph..

[15]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[16]  Jane Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[17]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[18]  Rémi Ronfard,et al.  Full‐range approximation of triangulated polyhedra. , 1996, Comput. Graph. Forum.

[19]  Wolfgang Straßer,et al.  Real time compression of triangle mesh connectivity , 1998, SIGGRAPH.

[20]  Gabriel Taubin,et al.  Geometry coding and VRML , 1998, Proc. IEEE.

[21]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[22]  Paolo Cignoni,et al.  A comparison of mesh simplification algorithms , 1998, Comput. Graph..

[23]  Davis King,et al.  Optimal Bit Allocation in 3D Compression , 1999 .

[24]  Jarek Rossignac,et al.  Tribox bounds for three-dimensional objects , 1999, Comput. Graph..

[25]  Gabriel Taubin,et al.  Geometric compression through topological surgery , 1998, TOGS.

[26]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[27]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[28]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[29]  Martin J. Dürst,et al.  Re , 1988 .

[30]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[31]  Jung-Hong Chuang,et al.  Efficient generation of isosurfaces in volume rendering , 1995, Comput. Graph..

[32]  Roberto Scopigno,et al.  Discretized Marching Cubes , 1994, Proceedings Visualization '94.

[33]  Jane Wilhelms,et al.  Topological considerations in isosurface generation , 1994, TOGS.

[34]  Jovan Popovic,et al.  Progressive simplicial complexes , 1997, SIGGRAPH.

[35]  Jarek Rossignac,et al.  Multi-resolution 3D approximations for rendering complex scenes , 1993, Modeling in Computer Graphics.