Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells.

A general synthesis of inorganic single-crystalline hollow spheres has been achieved through a mechanism analogous to the Kirkendall effect, based on a simple one-step laser process performed at room temperature. Taking TiO(2) as an example, we describe the laser process by investigating the influence of experimental parameters, for example, laser wavelength, laser fluence/irradiation time, liquid medium, and concentration of starting materials, on the formation of hollow spheres. It was found that the size-tailored TiO(2) hollow spheres demonstrate tunable light scattering over a wide visible-light range. Inspired by the effect of light scattering, we introduced the TiO(2) hollow sphere's scattering layer in quantum dot-sensitized solar cells and achieved a current notable 10% improvement of solar-to-electric conversion efficiency, indicating that TiO(2) hollow spheres are potential candidates in optical and optoelectronic devices.

[1]  Y. Bando,et al.  Size‐Tailored ZnO Submicrometer Spheres: Bottom‐Up Construction, Size‐Related Optical Extinction, and Selective Aniline Trapping , 2011, Advanced materials.

[2]  X. Lou,et al.  TiO2 hollow spheres with large amount of exposed (001) facets for fast reversible lithium storage , 2011 .

[3]  Wanjin Zhang,et al.  A one-pot synthetic approach to prepare palladium nanoparticles embedded hierarchically porous TiO2 hollow spheres for hydrogen peroxide sensing , 2010 .

[4]  Alexander Pyatenko,et al.  Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres. , 2010, Angewandte Chemie.

[5]  Mietek Jaroniec,et al.  Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. , 2010, Journal of the American Chemical Society.

[6]  N. Koshizaki,et al.  Growth fusion of submicron spherical boron carbide particles by repetitive pulsed laser irradiation in liquid media , 2010 .

[7]  C. Grigoropoulos,et al.  Recrystallization of picosecond laser-melted ZnO nanoparticles in a liquid: a molecular dynamics study. , 2010, The Journal of chemical physics.

[8]  N. Park,et al.  Nanostructured photoelectrode consisting of TiO2 hollow spheres for non-volatile electrolyte-based dye-sensitized solar cells , 2009 .

[9]  Y. Bando,et al.  Periodic TiO2 Nanorod Arrays with Hexagonal Nonclose‐Packed Arrangements: Excellent Field Emitters by Parameter Optimization , 2009 .

[10]  J. Bisquert,et al.  Improving the performance of colloidal quantum-dot-sensitized solar cells , 2009, Nanotechnology.

[11]  M. Fang,et al.  Room temperature synthesized rutile TiO2 nanoparticles induced by laser ablation in liquid and their photocatalytic activity , 2009, Nanotechnology.

[12]  Alexander Pyatenko,et al.  Mechanisms of Size Reduction of Colloidal Silver and Gold Nanoparticles Irradiated by Nd:YAG Laser , 2009 .

[13]  Yuh‐Lang Lee,et al.  Highly Efficient Quantum‐Dot‐Sensitized Solar Cell Based on Co‐Sensitization of CdS/CdSe , 2009 .

[14]  Xianluo Hu,et al.  Continuous Size Tuning of Monodisperse ZnO Colloidal Nanocrystal Clusters by a Microwave‐Polyol Process and Their Application for Humidity Sensing , 2008 .

[15]  N. Koshizaki,et al.  A hierarchically ordered TiO2 hemispherical particle array with hexagonal-non-close-packed tops: synthesis and stable superhydrophilicity without UV irradiation. , 2008, Small.

[16]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[17]  Yoshiki Shimizu,et al.  Hexagonal-close-packed, hierarchical amorphous TiO2 nanocolumn arrays: transferability, enhanced photocatalytic activity, and superamphiphilicity without UV irradiation. , 2008, Journal of the American Chemical Society.

[18]  Xun Wang,et al.  Multi‐functionalized Inorganic–Organic Rare Earth Hybrid Microcapsules , 2008 .

[19]  Guozhong Cao,et al.  Polydisperse Aggregates of ZnO Nanocrystallites: A Method for Energy‐Conversion‐Efficiency Enhancement in Dye‐Sensitized Solar Cells , 2008 .

[20]  Jiaguo Yu,et al.  Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. , 2008, Environmental science & technology.

[21]  Weiguo Song,et al.  Tin‐Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High‐Performance Anode Material in Lithium‐Ion Batteries , 2008 .

[22]  Guozhong Cao,et al.  Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. , 2008, Angewandte Chemie.

[23]  Yang Liu,et al.  Self‐Organized TiO2 Nanotube Array Sensor for the Determination of Chemical Oxygen Demand , 2008 .

[24]  K. Awaga,et al.  Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[25]  Nam-Gyu Park,et al.  Nano‐embossed Hollow Spherical TiO2 as Bifunctional Material for High‐Efficiency Dye‐Sensitized Solar Cells , 2008 .

[26]  C. Feldmann,et al.  Nanoscale γ-AlO(OH) Hollow Spheres: Synthesis and Container-Type Functionality , 2007 .

[27]  Haoshen Zhou,et al.  One-step synthesis of nano-micro chestnut TiO2 with rutile nanopins on the microanatase octahedron. , 2007, ACS nano.

[28]  H. Möhwald,et al.  Surface‐Engineered Nanocontainers for Entrapment of Corrosion Inhibitors , 2007 .

[29]  Alexander Pyatenko,et al.  Synthesis of Spherical Silver Nanoparticles with Controllable Sizes in Aqueous Solutions , 2007 .

[30]  G. Yang Laser ablation in liquids : Applications in the synthesis of nanocrystals , 2007 .

[31]  H. Möhwald,et al.  Microcontainers with electrochemically reversible permeability. , 2006, Journal of the American Chemical Society.

[32]  H. Zeng Synthetic architecture of interior space for inorganic nanostructures , 2006 .

[33]  Zhenzhong Yang,et al.  General synthetic route toward functional hollow spheres with double-shelled structures. , 2005, Angewandte Chemie.

[34]  Qing Peng,et al.  Monodisperse magnetic single-crystal ferrite microspheres. , 2005, Angewandte Chemie.

[35]  H. Möhwald,et al.  Magnetic colloidosomes derived from nanoparticle interfacial self-assembly. , 2005, Nano letters.

[36]  Helmuth Möhwald,et al.  Incorporating Fluorescent CdTe Nanocrystals into a Hydrogel via Hydrogen Bonding: Toward Fluorescent Microspheres with Temperature-Responsive Properties , 2005 .

[37]  H. Möhwald,et al.  Metallized Polyelectrolyte Microcapsules , 2005 .

[38]  H. Yang,et al.  Creation of intestine-like interior space for metal-oxide nanostructures with a quasi-reverse emulsion. , 2004, Angewandte Chemie.

[39]  Younan Xia,et al.  Bottom-Up and Top-Down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-Point Metals , 2004 .

[40]  R. Caruso,et al.  Template Synthesis and Photocatalytic Properties of Porous Metal Oxide Spheres Formed by Nanoparticle Infiltration , 2004 .

[41]  Yu‐Guo Guo,et al.  Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. , 2004, Angewandte Chemie.

[42]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[43]  B. Satpati,et al.  Understanding the quantum size effects in ZnO nanocrystals , 2004 .

[44]  M. Antonietti,et al.  Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. , 2003, Journal of the American Chemical Society.

[45]  Yadong Li,et al.  ZnSe semiconductor hollow microspheres. , 2003, Angewandte Chemie.

[46]  Wenming Chen,et al.  Synthesis of Novel Nickel Sulfide Submicrometer Hollow Spheres , 2003 .

[47]  Chen,et al.  Hollow Spheres of Mesoporous Aluminosilicate with a Three-Dimensional Pore Network and Extraordinarily High Hydrothermal Stability , 2003 .

[48]  A. R. Bausch,et al.  Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles , 2002, Science.

[49]  T. Hyeon,et al.  Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. , 2002, Journal of the American Chemical Society.

[50]  Younan Xia,et al.  Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads , 2000 .

[51]  Caruso,et al.  Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating , 1998, Science.

[52]  M. Umeno,et al.  Determination of Optical Constants of Solgel-Derived Inhomogeneous TiO(2) Thin Films by Spectroscopic Ellipsometry and Transmission Spectroscopy. , 1998, Applied optics.

[53]  Donald E. Chickering,et al.  Biologically erodable microspheres as potential oral drug delivery systems , 1997, Nature.

[54]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .