Exponential nonlinear observer for parametric identification and synchronization of chaotic systems

This work proposes the use of a new exponential nonlinear observer for the purpose of parametric identification and synchronization of chaotic systems. The exponential convergence of the observer is guaranteed by a persistent excitation condition. This approach is shown to be suitable for a wide variety of chaotic systems. In order to illustrate the observer design procedure, several examples with simulation results are presented.

[1]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[2]  G. Besancon,et al.  Further results on high gain observers for nonlinear systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[3]  Guanrong Chen,et al.  Secure synchronization of a class of chaotic systems from a nonlinear observer approach , 2005, IEEE Transactions on Automatic Control.

[4]  Ju H. Park Chaos synchronization of a chaotic system via nonlinear control , 2005 .

[5]  A. Balanov,et al.  Synchronization: From Simple to Complex , 2008 .

[6]  T. Ortiz,et al.  Modèles et observateurs pour les systèmes d'écoulement sous pression. Extension aux systèmes chaotiques , 2011 .

[7]  M. Boutayeb,et al.  Observers based synchronization and input recovery for a class of nonlinear chaotic models. , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[8]  J. Gauthier,et al.  Deterministic Observation Theory and Applications , 2001 .

[9]  Morgül,et al.  Observer based synchronization of chaotic systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Govindan Rangarajan,et al.  Stability of synchronization in a multi-cellular system , 2010 .

[11]  Joseph Maina Mungai,et al.  From simple to complex , 2002 .

[12]  Xiangdong Wang,et al.  Parameters identification of chaotic systems via chaotic ant swarm , 2006 .

[13]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[14]  Mahdi Heydari,et al.  Stochastic chaos synchronization using Unscented Kalman-Bucy Filter and sliding mode control , 2011, Math. Comput. Simul..

[15]  Sudeshna Sinha,et al.  Synchronization in coupled cells with activator-inhibitor pathways. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Antonio Loría,et al.  Adaptive Observers With Persistency of Excitation for Synchronization of Chaotic Systems , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Hamid Khaloozadeh,et al.  A stable adaptive synchronization scheme for uncertain chaotic systems via observer , 2009 .

[18]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[19]  Henk Nijmeijer,et al.  Observers for canonic models of neural oscillators , 2009, 0905.0149.

[20]  Gildas Besançon,et al.  An Immersion-Based Observer Design for Rank-Observable Nonlinear Systems , 2007, IEEE Transactions on Automatic Control.

[21]  J. Gauthier,et al.  Observability and observers for non-linear systems , 1986, 1986 25th IEEE Conference on Decision and Control.

[22]  Gérard Bloch,et al.  Considering the attractor structure of chaotic maps for observer-based synchronization problems , 2005, Math. Comput. Simul..

[23]  O. Rössler An equation for continuous chaos , 1976 .

[24]  Engin Yaz,et al.  Sliding-Mode Adaptive Observer Approach to Chaotic Synchronization , 2000 .

[25]  Govindan Rangarajan,et al.  Stability of synchronization in a multicellular system , 2010 .

[26]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[27]  Ye Xu,et al.  An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems , 2011, Expert Syst. Appl..

[28]  Bo Peng,et al.  Differential evolution algorithm-based parameter estimation for chaotic systems , 2009 .

[29]  E. Mosekilde,et al.  Chaotic Synchronization: Applications to Living Systems , 2002 .

[30]  A. Voda,et al.  Chaotic excitation-based convergence analysis of an adaptive observer for Lorenz system , 2011 .

[31]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[32]  G. Besançon,et al.  On adaptive observers for state affine systems , 2006 .

[33]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[34]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[35]  Jun-an Lu,et al.  Synchronization of a unified chaotic system and the application in secure communication , 2002 .

[36]  Henk Nijmeijer,et al.  Adaptive Observers and Parametric Identification for Systems without a Canonical Adaptive Observer Form , 2009 .

[37]  Huiyan Li,et al.  Synchronization of coupled equations of Morris–Lecar model , 2008 .