3,5-diiodo-l-thyronine, by modulating mitochondrial functions, reverses hepatic fat accumulation in rats fed a high-fat diet.

[1]  L. Wojtczak,et al.  Fatty acids as modulators of the cellular production of reactive oxygen species. , 2008, Free radical biology & medicine.

[2]  L. Vergani,et al.  Effects of 3,5-Diiodo-L-Thyronine Administration on the Liver of High Fat Diet-Fed Rats , 2008, Experimental biology and medicine.

[3]  H. Tilg,et al.  Effect of pronounced weight loss on visceral fat, liver steatosis and adiponectin isoforms , 2008, European journal of clinical investigation.

[4]  M. Mollica,et al.  Skeletal muscle subsarcolemmal mitochondrial dysfunction in high-fat fed rats exhibiting impaired glucose homeostasis , 2007, International Journal of Obesity.

[5]  Yoosoo Chang,et al.  Higher concentrations of alanine aminotransferase within the reference interval predict nonalcoholic fatty liver disease. , 2007, Clinical chemistry.

[6]  D. Pessayre,et al.  Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. , 2006, Mitochondrion.

[7]  A. Antonelli,et al.  3,5‐Diiodo‐L‐thyronine powerfully reduces adiposity in rats by increasing the burning of fats , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[8]  M. Mollica,et al.  Cold exposure differently influences mitochondrial energy efficiency in rat liver and skeletal muscle , 2005, FEBS letters.

[9]  B. Lowell,et al.  The mitochondrial uncoupling-protein homologues , 2005, Nature Reviews Molecular Cell Biology.

[10]  B. Miroux,et al.  The biology of mitochondrial uncoupling proteins. , 2004, Diabetes.

[11]  Bernhard Kadenbach,et al.  Intrinsic and extrinsic uncoupling of oxidative phosphorylation. , 2003, Biochimica et biophysica acta.

[12]  N. Chalasani,et al.  Hepatic cytochrome P450 2E1 activity in nondiabetic patients with nonalcoholic steatohepatitis , 2003, Hepatology.

[13]  M. Brand,et al.  Topology of Superoxide Production from Different Sites in the Mitochondrial Electron Transport Chain* , 2002, The Journal of Biological Chemistry.

[14]  P. Ježek Possible physiological roles of mitochondrial uncoupling proteins--UCPn. , 2002, The international journal of biochemistry & cell biology.

[15]  G. de Rosa,et al.  De novo expression of uncoupling protein 3 is associated to enhanced mitochondrial thioesterase‐1 expression and fatty acid metabolism in liver of fenofibrate‐treated rats , 2002, FEBS letters.

[16]  A. Lombardi,et al.  Are the effects of T3 on resting metabolic rate in euthyroid rats entirely caused by T3 itself? , 2002, Endocrinology.

[17]  A. Lombardi,et al.  Uncoupling protein-3 is a molecular determinant for the regulation of resting metabolic rate by thyroid hormone. , 2001, Endocrinology.

[18]  J. Clore,et al.  Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. , 2001, Gastroenterology.

[19]  R. Unger,et al.  Liporegulation in Diet-induced Obesity , 2001, The Journal of Biological Chemistry.

[20]  M. Hüttemann,et al.  Mitochondrial energy metabolism is regulated via nuclear-coded subunits of cytochrome c oxidase. , 2000, Free radical biology & medicine.

[21]  D. Sanchís,et al.  The mitochondrial uncoupling protein-2: current status. , 1999, The international journal of biochemistry & cell biology.

[22]  A. Burt,et al.  Diagnosis and interpretation of steatosis and steatohepatitis. , 1998, Seminars in diagnostic pathology.

[23]  G. Barja Mitochondrial Free Radical Production and Aging in Mammals and Birds a , 1998, Annals of the New York Academy of Sciences.

[24]  F. Bosch,et al.  Prevention of diabetic alterations in transgenic mice overexpressing Myc in the liver. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[25]  H. Rokos,et al.  3,5-Di-iodo-L-thyronine suppresses TSH in rats in vivo and in rat pituitary fragments in vitro. , 1995, The Journal of endocrinology.

[26]  A. J. Hulbert,et al.  Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat. , 1994, Biochimica et biophysica acta.

[27]  M. Kaplan,et al.  Early Treatment of Obese (ob/ob) Mice with Triiodothyronine Increases Oxygen Consumption and Temperature and Decreases Body Fat Content , 1994, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[28]  S. Zeisel,et al.  Effects of choline deficiency and methotrexate treatment upon rat liver. , 1990, The Journal of nutritional biochemistry.

[29]  J. Nedergaard,et al.  A novel type of short- and medium-chain acyl-CoA hydrolases in brown adipose tissue mitochondria. , 1988, The Journal of biological chemistry.

[30]  C. Hoppel,et al.  Elevated hepatic mitochondrial and peroxisomal oxidative capacities in fed and starved adult obese (ob/ob) mice. , 1985, The Biochemical journal.

[31]  J. Folch,et al.  A simple method for the isolation and purification of total lipides from animal tissues. , 1957, The Journal of biological chemistry.

[32]  A. G. Everson Histochemistry: Theoretical and Applied , 1953 .

[33]  M. Porter Annals of a Publishing House: EDINBURGH AND LONDON , 2010 .

[34]  J. Sastre,et al.  Mitochondrial function in liver disease. , 2007, Frontiers in bioscience : a journal and virtual library.

[35]  G. Farrell,et al.  LIVER FAILURE AND LIVER DISEASE Nonalcoholic Fatty Liver Disease: From Steatosis to Cirrhosis , 2006 .

[36]  P. Angulo Treatment of nonalcoholic fatty liver disease. , 2002, Annals of hepatology.

[37]  P. Newberne,et al.  Lipotropic factors and oncogenesis. , 1986, Advances in experimental medicine and biology.