Twisted Pseudodifferential Calculus and Application to the Quantum Evolution of Molecules
暂无分享,去创建一个
[1] H. Spohn,et al. The time-dependent Born-Oppenheimer approximation , 2007, 0712.4369.
[2] D. W. Ball,et al. The Born-Oppenheimer Approximation , 2006 .
[3] G. Nenciu,et al. Semiclassical limit for multistate Klein–Gordon systems: almost invariant subspaces, and scattering theory , 2004 .
[4] Yuri Safarov,et al. AN INTRODUCTION TO SEMICLASSICAL AND MICROLOCAL ANALYSIS (Universitext) By ANDRÉ MARTINEZ: 190 pp., £49.00 (US$59.95), ISBN 0-387-95344-2 (Springer, New York, 2002) , 2003 .
[5] V. Sordoni. Reduction Scheme for Semiclassical Operator-Valued Schrödinger Type Equation and Application to Scattering , 2003 .
[6] G. Nenciu. On asymptotic perturbation theory for Quantum Mechanics: Almost invariant subspaces and gauge invari , 2002 .
[7] André Martinez,et al. A general reduction scheme for the time-dependent Born–Oppenheimer approximation☆ , 2002 .
[8] H. Spohn,et al. Space-adiabatic perturbation theory , 2002, math-ph/0201055.
[9] André Martinez,et al. An Introduction to Semiclassical and Microlocal Analysis , 2002 .
[10] H. Spohn,et al. Adiabatic Decoupling and Time-Dependent Born–Oppenheimer Theory , 2001, math-ph/0104024.
[11] G. Hagedorn,et al. A Time-Dependent Born–Oppenheimer Approximation with Exponentially Small Error Estimates , 2000, math-ph/0005006.
[12] G. Nenciu,et al. Linear adiabatic theory. Exponential estimates , 1993 .
[13] J. Sjöstrand,et al. A mathematical approach to the effective Hamiltonian in perturbed periodic problems , 1991 .
[14] G. Hagedorn. High order corrections to the time-dependent Born-Oppenheimer approximation. II: Coulomb systems , 1988 .
[15] G. Hagedorn. High order corrections to the time-independent Born-Oppenheimer approximation II: Diatomic Coulomb systems , 1988 .
[16] George A. Hagedorn,et al. "High Order Corrections to the Time-Dependent Born-Oppenheimer Approximation I: Smooth Potentials" , 1986 .
[17] G. Hagedorn. Semiclassical quantum mechanics , 1980 .
[18] J. Combes,et al. Regularity and asymptotic properties of the discrete spectrum of electronic Hamiltonians , 1978 .
[19] Stefan Teufel,et al. Adiabatic perturbation theory in quantum dynamics , 2003 .
[20] Mouez Dimassi,et al. Spectral asymptotics in the semi-classical limit , 1999 .
[21] R. Brummelhuis,et al. Scattering amplitude for dirac operators , 1999 .
[22] Didier Robert,et al. Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow , 1997 .
[23] J. Sjöstrand. Projecteurs adiabatiques du point de vue pseudodifférentiel , 1993 .
[24] Ruedi Seiler,et al. On the Born-Oppenheimer expansion for polyatomic molecules , 1992 .
[25] A. Martínez. Développements asymptotiques et effet tunnel dans l'approximation de Born-Oppenheimer , 1989 .
[26] D. Robert. Autour de l'approximation semi-classique , 1987 .
[27] J. Combes,et al. On the Born-Oppenheimer approximation , 1981 .
[28] J. Sjöstrand,et al. Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem , 1976 .
[29] Tosio Kato. Perturbation theory for linear operators , 1966 .
[30] W. Heisenberg,et al. Zur Quantentheorie der Molekeln , 1924 .