Twisted Pseudodifferential Calculus and Application to the Quantum Evolution of Molecules

We construct an abstract pseudodifferential calculus with operator-valued symbol, adapted to the treatment of Coulomb-type interactions, and we apply it to study the quantum evolution of molecules in the Born-Oppenheimer approximation, in the case where the electronic Hamiltonian admits a local gap in its spectrum. In particular, we show that the molecular evolution can be reduced to the one of a system of smooth semiclassical operators, the symbol of which can be computed explicitely. In addition, we study the propagation of certain wave packets up to long time values of Ehrenfest order. (This work has been accepted for publication as part of the Memoirs of the American Mathematical Society and will be published in a future volume.)

[1]  H. Spohn,et al.  The time-dependent Born-Oppenheimer approximation , 2007, 0712.4369.

[2]  D. W. Ball,et al.  The Born-Oppenheimer Approximation , 2006 .

[3]  G. Nenciu,et al.  Semiclassical limit for multistate Klein–Gordon systems: almost invariant subspaces, and scattering theory , 2004 .

[4]  Yuri Safarov,et al.  AN INTRODUCTION TO SEMICLASSICAL AND MICROLOCAL ANALYSIS (Universitext) By ANDRÉ MARTINEZ: 190 pp., £49.00 (US$59.95), ISBN 0-387-95344-2 (Springer, New York, 2002) , 2003 .

[5]  V. Sordoni Reduction Scheme for Semiclassical Operator-Valued Schrödinger Type Equation and Application to Scattering , 2003 .

[6]  G. Nenciu On asymptotic perturbation theory for Quantum Mechanics: Almost invariant subspaces and gauge invari , 2002 .

[7]  André Martinez,et al.  A general reduction scheme for the time-dependent Born–Oppenheimer approximation☆ , 2002 .

[8]  H. Spohn,et al.  Space-adiabatic perturbation theory , 2002, math-ph/0201055.

[9]  André Martinez,et al.  An Introduction to Semiclassical and Microlocal Analysis , 2002 .

[10]  H. Spohn,et al.  Adiabatic Decoupling and Time-Dependent Born–Oppenheimer Theory , 2001, math-ph/0104024.

[11]  G. Hagedorn,et al.  A Time-Dependent Born–Oppenheimer Approximation with Exponentially Small Error Estimates , 2000, math-ph/0005006.

[12]  G. Nenciu,et al.  Linear adiabatic theory. Exponential estimates , 1993 .

[13]  J. Sjöstrand,et al.  A mathematical approach to the effective Hamiltonian in perturbed periodic problems , 1991 .

[14]  G. Hagedorn High order corrections to the time-dependent Born-Oppenheimer approximation. II: Coulomb systems , 1988 .

[15]  G. Hagedorn High order corrections to the time-independent Born-Oppenheimer approximation II: Diatomic Coulomb systems , 1988 .

[16]  George A. Hagedorn,et al.  "High Order Corrections to the Time-Dependent Born-Oppenheimer Approximation I: Smooth Potentials" , 1986 .

[17]  G. Hagedorn Semiclassical quantum mechanics , 1980 .

[18]  J. Combes,et al.  Regularity and asymptotic properties of the discrete spectrum of electronic Hamiltonians , 1978 .

[19]  Stefan Teufel,et al.  Adiabatic perturbation theory in quantum dynamics , 2003 .

[20]  Mouez Dimassi,et al.  Spectral asymptotics in the semi-classical limit , 1999 .

[21]  R. Brummelhuis,et al.  Scattering amplitude for dirac operators , 1999 .

[22]  Didier Robert,et al.  Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow , 1997 .

[23]  J. Sjöstrand Projecteurs adiabatiques du point de vue pseudodifférentiel , 1993 .

[24]  Ruedi Seiler,et al.  On the Born-Oppenheimer expansion for polyatomic molecules , 1992 .

[25]  A. Martínez Développements asymptotiques et effet tunnel dans l'approximation de Born-Oppenheimer , 1989 .

[26]  D. Robert Autour de l'approximation semi-classique , 1987 .

[27]  J. Combes,et al.  On the Born-Oppenheimer approximation , 1981 .

[28]  J. Sjöstrand,et al.  Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem , 1976 .

[29]  Tosio Kato Perturbation theory for linear operators , 1966 .

[30]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .