A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration

Abstract A complete polymer solar cell module prepared in the ambient atmosphere under industrial conditions is presented. The versatility of the polymer solar cell technology is demonstrated through the use of abstract forms for the active area, a flexible substrate, processing entirely from solution, complete processing in air using commonly available screen printing, and finally, simple mechanical encapsulation using a flexible packaging material and electrical contacting post-production using crimped contacts. We detail the production of more than 2000 modules in one production run and show that the production technique is scalable and well suited for direct transfer to the printing industry employing existing production equipment. The production speed and cost analysis for the individual modules from this batch is discussed and a forecast for the high volume cost based on this method is given. Further, the points where significant cost reductions can be achieved are identified. The use of the solar cell as the power supply for a small radio and other small electronic circuits is demonstrated. Lastly, the operational stability under ambient conditions in the dark and under illumination is discussed.

[1]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[2]  Frederik C. Krebs,et al.  Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate , 2004 .

[3]  F. Krebs,et al.  Analysis of the failure mechanism for a stable organic photovoltaic during 10 000 h of testing , 2007 .

[4]  Frederik C. Krebs,et al.  Removal of Palladium Nanoparticles from Polymer Materials , 2005 .

[5]  Ronn Andriessen,et al.  Printable anodes for flexible organic solar cell modules , 2004 .

[6]  Raj René Janssen,et al.  Electronic memory effects in diodes from a zinc oxide nanoparticle-polystyrene hybrid material , 2006 .

[7]  Paul Heremans,et al.  Polymer solar cells: screen printing as a novel deposition technique , 2004, SPIE Photonics Europe.

[8]  Frederik C. Krebs,et al.  Effective Removal and Quantitative Analysis of Pd, Cu, Ni, and Pt Catalysts from Small-Molecule Products , 2006 .

[9]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[10]  Frederik C. Krebs,et al.  A brief history of the development of organic and polymeric photovoltaics , 2004 .

[11]  Kristian O. Sylvester-Hvid,et al.  Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy , 2007 .

[12]  Xiaoniu Yang,et al.  Nanoscale morphology of high-performance polymer solar cells. , 2005, Nano letters.

[13]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[14]  F. Krebs,et al.  Low band gap polymers for organic photovoltaics , 2007 .

[15]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[16]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[17]  Frederik C. Krebs,et al.  Polymer photovoltaics: A practical approach , 2008 .

[18]  Mikkel Jørgensen,et al.  Influence of Residual Catalyst on the Properties of Conjugated Polyphenylenevinylene Materials: Palladium Nanoparticles and Poor Electrical Performance , 2004 .

[19]  Klaus Bechgaard,et al.  Structural study of four complexes of the M-N2S2 type derived from diethylphenylazothioformamide and the metals palladium, platinum, copper and nickel. , 2007, Acta crystallographica. Section B, Structural science.

[20]  Jean M. J. Fréchet,et al.  Synthesis, Characterization, and Field-Effect Transistor Performance of Carboxylate-Functionalized Polythiophenes with Increased Air Stability , 2005 .

[21]  Frederik C. Krebs,et al.  Biodegradable polymer solar cells , 2008 .

[22]  Frederik C. Krebs,et al.  Transparent anodes for polymer photovoltaics: Oxygen permeability of PEDOT , 2007 .

[23]  Suren A. Gevorgyan,et al.  A setup for studying stability and degradation of polymer solar cells , 2008 .

[24]  Ole Hagemann,et al.  Thermo-cleavable solvents for printing conjugated polymers: Application in polymer solar cells , 2009 .

[25]  F. Krebs Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes , 2008 .

[26]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[27]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[28]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[29]  Nasser N Peyghambarian,et al.  Fabrication of bulk heterojunction plastic solar cells by screen printing , 2001 .

[30]  Helmut Neugebauer,et al.  Flexible, long-lived, large-area, organic solar cells , 2007 .

[31]  Frederik C. Krebs,et al.  Significant Improvement of Polymer Solar Cell Stability , 2005 .

[32]  Christoph J. Brabec,et al.  Flexible organic P3HT:PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime , 2008 .

[33]  Xiaoniu Yang,et al.  Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. , 2005, The journal of physical chemistry. B.

[34]  John C. Vickerman,et al.  ToF-SIMS : surface analysis by mass spectrometry , 2001 .

[35]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[36]  C. Winder,et al.  Low bandgap polymers for photon harvesting in bulk heterojunction solar cells , 2004 .

[37]  F. Krebs,et al.  An explanation for the high stability of polycarboxythiophenes in photovoltaic devices—A solid-state NMR dipolar recoupling study , 2008 .

[38]  J. Fréchet,et al.  Polythiophene containing thermally removable solubilizing groups enhances the interface and the performance of polymer-titania hybrid solar cells. , 2004, Journal of the American Chemical Society.

[39]  Mohamed Latreche,et al.  Transparent barrier coatings on polyethylene terephthalate by single- and dual-frequency plasma-enhanced chemical vapor deposition , 1998 .

[40]  Frederik C. Krebs,et al.  Out-door testing and long-term stability of plastic solar cells , 2006 .

[41]  Andreas Gombert,et al.  Organic solar cell modules for specific applications—From energy autonomous systems to large area photovoltaics , 2008 .

[42]  Frederik C. Krebs,et al.  Large area plastic solar cell modules , 2007 .

[43]  Frederik C. Krebs,et al.  A simple nanostructured polymer/ZnO hybrid solar cell—preparation and operation in air , 2008, Nanotechnology.