UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials

Abstract Over the last two decades UV-induced Δ n profiling in SiO 2 glasses was widely used for production of in-fibre/waveguide Bragg grating-based (BG) optical devices for photonics industry. These devices have found numerous applications in optical fiber sensing, telecommunication and all fiber laser systems. From a practical point of view, it is the most important photo-induced phenomenon observed each time a silica glass is exposed to convenient low or high UV intensity laser light through one quantum and multi-photon mechanisms respectively. In fact, depending on the materials, conditions of exposure and conditioning processes (i.e. the photosensitization process), UV induced index changes may vary from 10−5 up to 10−2. In the following, for the purpose of illustrating the complexity of this multiple-variable dependence, we present a review of how factors such as exposure time, laser wavelength, sensitization process, pulse duration, or the chemical composition, can affect the photosensitive response of silica-based glasses, i.e. the number of photons involved in the initial step of absorption, the writing efficiency and so on.

[1]  Yu. A. Matveets,et al.  Fabrication of fiber Bragg gratings with 267 nm femtosecond radiation. , 2004, Optics express.

[2]  S. Brueck,et al.  Composition dependence of the photoinduced refractive-index change in lead silicate glasses. , 1999, Optics letters.

[3]  Comparing the properties of various sensitization methods in H2-loaded, UV hypersensitized or OH-flooded standard germanosilicate fibers. , 2005, Optics express.

[4]  J. Brannon,et al.  Excimer-laser ablation and etching , 1990, IEEE Circuits and Devices Magazine.

[5]  Stephen Ho,et al.  Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides. , 2008, Optics express.

[6]  M Aslund,et al.  Ultraviolet-induced absorption losses in hydrogen-loaded optical fibers and in presensitized optical fibers. , 2000, Optics letters.

[7]  H. Hosono,et al.  Interconversion between non-bridging oxygen hole center and peroxy radical in F2-laser-irradiated SiO2 glass , 2004 .

[8]  Isabelle Riant,et al.  Thermal stability of the 248-nm-induced presensitization process in standard H2-loaded germanosilicate fibers. , 2002, Applied optics.

[9]  Ian Bennion,et al.  Strong long-period fiber gratings recorded at 352 nm. , 2005, Optics letters.

[10]  M.J. Withford,et al.  Rapid production of arbitrary fiber Bragg gratings using femtosecond laser radiation , 2005, 2005 IEEE LEOS Annual Meeting Conference Proceedings.

[11]  E Buckley,et al.  Bragg gratings in air-silica structured fibers. , 2003, Optics letters.

[12]  T. Strasser,et al.  Highly reflective fiber Bragg gratings written through a vinyl ether fiber coating , 1999, IEEE Photonics Technology Letters.

[13]  E Buckley,et al.  All-fibre photonic crystal distributed Bragg reflector (PC-DBR) fibre laser. , 2003, Optics express.

[14]  Bernard Prade,et al.  Study of damage in fused silica induced by ultra-short IR laser pulses , 2001 .

[15]  K.M. Golant,et al.  In-fiber Bragg gratings for sensor applications at high temperatures , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.

[16]  J. Ihlemann,et al.  Graded transmission dielectric optical masks by laser ablation , 1998 .

[17]  Photosensitivity in tin-doped silica optical fibres , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[18]  H. N. Rourke,et al.  Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber , 1997 .

[19]  Liang Dong,et al.  UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings , 2003 .

[20]  J Zhang,et al.  Fabrication of strong long-period gratings in hydrogen-free fibers with 157-nm F2-laser radiation. , 2001, Optics letters.

[21]  Norberto Chiodini,et al.  Vacuum ultraviolet absorption spectrum of photorefractive Sn-doped silica fiber preforms , 2001 .

[22]  M Aslund,et al.  Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber. , 2000, Optics letters.

[23]  D. C. Shaver,et al.  Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica , 1989 .

[24]  J. Nishii,et al.  Enormous photon-induced volume expansion of Ge-doped silica thin films , 1999 .

[25]  L. Poladian,et al.  Increasing fiber photosensitivity to near-UV radiation by rare earth doping , 2002, IEEE Photonics Technology Letters.

[26]  Fabien Quere,et al.  Time-resolved study of laser-induced breakdown in dielectrics , 2001 .

[27]  John Canning,et al.  Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser , 2011 .

[28]  B. Brichard,et al.  Gamma radiation-induced refractive index change in Ge- and N-doped silica , 2008 .

[29]  Peter G. Kazansky,et al.  Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited] , 2011 .

[30]  Peter R. Herman,et al.  Rapid long-period grating formation in hydrogen-loaded fibre with 157 nm F2-laser radiation , 2000 .

[31]  D. A. Pinnow,et al.  Optical aging characteristics of borosilicate clad fused silica core fiber optical waveguides , 1975 .

[32]  G. Wegner,et al.  Up-conversion fluorescence: noncoherent excitation by sunlight. , 2006, Physical review letters.

[33]  David J. Webb,et al.  Micro-fabrication of advanced photonic devices by means of direct point-by-point femtosecond inscription in silica , 2006, SPIE LASE.

[34]  R. Kashyap,et al.  Enhanced UV photosensitivity in boron codoped germanosilicate fibres , 1993 .

[35]  D. Nikogosyan,et al.  Two-quantum UV photochemistry of nucleic acids: comparison with conventional low-intensity UV photochemistry and radiation chemistry. , 1990, International journal of radiation biology.

[36]  David N. Nikogosyan,et al.  Multi-photon high-excitation-energy approach to fibre grating inscription , 2006 .

[37]  Liang Dong,et al.  Evidence by transmission electron microscopy of densification associated to Bragg grating photoimprinting in germanosilicate optical fibers , 1997 .

[38]  Konstantin Golant,et al.  Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures , 2006 .

[39]  P. Kryukov,et al.  Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation. , 2003, Optics letters.

[40]  D N Payne,et al.  Strong photosensitive gratings in tin-doped phosphosilicate optical fibers. , 1995, Optics letters.

[41]  P. G. Kryukov,et al.  Long-period fibre grating formation with 264 nm femtosecond radiation , 2002 .

[42]  Man F. Yan,et al.  Strong Bragg phase gratings in phosphorus-doped fiber induced by ArF excimer radiation , 1995 .

[43]  S. Mihailov,et al.  Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications , 2004, IEEE Photonics Technology Letters.

[44]  A. L. Tomashuk,et al.  Refractive index dispersion of doped silica for fiber optics , 2002 .

[45]  John Canning,et al.  Grating writing in structured optical fibers , 2011 .

[46]  Kevin P. Chen,et al.  157-nm laser-induced modification of fused-silica glasses , 2001, SPIE LASE.

[47]  G. Brambilla,et al.  Photoinduced processes in Sn-doped silica fiber preforms , 2000 .

[48]  Maria Goeppert-Mayer Über Elementarakte mit zwei Quantensprüngen , 1931 .

[49]  M. Lancry,et al.  VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light , 2005 .

[50]  J. Canning,et al.  Transient and permanent gratings in phosphosilicate optical fibers produced by the flash condensation technique. , 1995, Optics letters.

[51]  Alan Arai,et al.  Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate. , 2005, Optics express.

[52]  Photosensitization of optical fiber by UV exposure of hydrogen loaded fiber , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[53]  Hideo Hosono,et al.  Interaction of F2 excimer laser with SiO2 glasses: Towards the third generation of synthetic SiO2 glasses , 2000 .

[54]  C. Garrett,et al.  Two-photon excitation in CaF2:Eu2+ , 2003 .

[55]  Guido Perrone,et al.  Photosensitive properties of a tin-doped sodium silicate glass for direct ultraviolet writing , 2004 .

[56]  C. Garrett,et al.  Two-Photon Excitation in CaF 2 : Eu 2+ , 1961 .

[57]  M Aslund,et al.  Locking in photosensitivity within optical fiber and planar waveguides by ultraviolet preexposure. , 1999, Optics letters.

[58]  P. Lemaire,et al.  High pressure H/sub 2/ loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO/sub 2/ doped optical fibres , 1993 .

[59]  B. Poumellec,et al.  The Photorefractive Bragg Gratings in the Fibers for Telecommunications , 1996 .

[60]  John Canning,et al.  Photo-induced densification in Er3+/Al doped silica preform plates using 193-nm laser light , 2009 .

[61]  Jörg Hübner,et al.  Large UV-induced negative index changes in germanium-free nitrogen-doped planar SiO2 waveguides , 1998 .

[62]  P. Herman,et al.  Large photosensitivity in germanosilicate planar waveguides induced by 157-nm F/sub 2/-laser radiation , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[63]  H. Hosono,et al.  In situobservation of the formation, diffusion, and reactions of hydrogenous species inF2-laser-irradiatedSiO2glass using a pump-and-probe technique , 2006 .

[64]  E. Friebele,et al.  Index structure of fiber Bragg gratings in Ge-SiO(2) fibers. , 1997, Optics letters.

[65]  Gilberto Brambilla,et al.  Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: comparison with other existing methods of fabrication , 2005 .

[66]  Tong Sun,et al.  Analysis of thermal decay and prediction of operational lifetime for a type I boron-germanium codoped fiber Bragg grating. , 2003, Applied optics.

[67]  Ping Lu,et al.  Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation. , 2003 .

[68]  Linards Skuja,et al.  Defects in oxide glasses , 2005 .

[69]  John Canning,et al.  Photosensitization and Photostabilization of Laser-Induced Index Changes in Optical Fibers , 2000 .

[70]  Ian Bennion,et al.  Effects of thermal annealing on Bragg fibre gratings in boron/germania co-doped fibre , 1998 .

[71]  Michael Fokine,et al.  Photosensitivity, chemical composition gratings and optical fiber based components , 2002 .

[72]  Eugeni M. Dianov,et al.  Microscopic mechanisms of photosensitivity in germanium-doped silica glass , 1996, Other Conferences.

[73]  John Canning,et al.  Negative index gratings in germanosilicate planar waveguides , 1998 .

[74]  C. Caucheteur,et al.  Polarization properties of long-period gratings prepared by high-intensity femtosecond 352-nm pulses , 2005, IEEE Photonics Technology Letters.

[75]  H. Hosono,et al.  UV–VUV laser induced phenomena in SiO2 glass , 2004 .

[76]  Vladimir Liberman,et al.  Materials issues for optical components and photomasks in 157 nm lithography , 1999 .

[77]  R. Kashyap Fiber Bragg Gratings , 1999 .

[78]  Gilberto Brambilla,et al.  Photorefractive index gratings in SnO2:SiO2 optical fibers , 2000 .

[79]  Bertrand Poumellec,et al.  Densification involved in the UV-based photosensitivity of silica glasses and optical fibers , 1997 .

[80]  Peter R. Herman,et al.  High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser , 2011 .

[81]  D. Grobnic,et al.  Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask , 2004, IEEE Photonics Technology Letters.

[82]  Gary C. Bjorklund,et al.  A holographic technique for investigating photochemical reactions , 1980 .

[83]  Bertrand Poumellec,et al.  Experimental evidence of two types of photorefractive effects occuring during photoinscriptions of Bragg gratings within germanosilicate fibres , 1993 .

[84]  I. Bennion,et al.  Direct writing of fibre Bragg gratings by femtosecond laser , 2004 .

[85]  L Reekie,et al.  Negative-index gratings formed by a 193-nm excimer laser. , 1996, Optics letters.

[86]  R. A. B. Devine,et al.  Ultraviolet Irradiation Induced Compaction and Photoetching in Amorphous, Thermal SiO2 , 1985 .

[87]  Arnaud Couairon,et al.  Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses , 2005 .

[88]  Bernard Prade,et al.  Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses , 1999 .

[89]  Tsuneo Mitsuyu,et al.  Photowritten optical waveguides in various glasses with ultrashort pulse laser , 1997 .

[90]  L. Gasca,et al.  Efficient Bragg gratings in phosphosilicate and germanosilicate photonic crystal fiber. , 2006, Applied optics.

[91]  L. Reekie,et al.  Enhanced photosensitivity in tin-codoped germanosilicate optical fibers , 1995, IEEE Photonics Technology Letters.

[92]  H. Hosono,et al.  Photochemical processes induced by 157-nm light in H(2)-impregnated glassy SiO(2):OH. , 1999, Optics letters.

[93]  Peter G. Kazansky,et al.  Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses , 2011 .

[94]  G. Brambilla,et al.  Long-period fiber grating fabrication by high-intensity femtosecond pulses at 211 nm , 2005, Journal of Lightwave Technology.

[95]  M. Lancry,et al.  Mechanisms of Bragg grating formation in UV hypersensitized standard germanosilicate fibers with KrF laser light , 2006 .

[96]  J. Nishii,et al.  In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses. , 2001, Optics letters.

[97]  D. Nikogosyan Long-period gratings in a standard telecom fibre fabricated by high-intensity femtosecond UV and near-UV laser pulses , 2006 .

[98]  W. A. Reed,et al.  Thermally enhanced ultraviolet photosensitivity in GeO2 and P2O5 doped optical fibers , 1995 .

[99]  I. V. Nikolin,et al.  HIGHLY PHOTOSENSITIVE NITROGEN-DOPED GERMANOSILICATE FIBRE FOR INDEX GRATING WRITING , 1997 .

[100]  Alexander M. Prokhorov,et al.  Fabrication of a long-period grating in a fibre by second-harmonic radiation from a femtosecond Ti:sapphire laser , 2001 .

[101]  R P Salathé,et al.  Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings. , 1995, Optics letters.

[102]  D C Johnson,et al.  Bragg gratings in defect-free germanium-doped optical fibers. , 1999, Optics letters.

[103]  R. P. Smith,et al.  Accelerated lifetime tests on UV written intra-core gratings in boron germania codoped silica fibre , 1995 .

[104]  P Niay,et al.  Refractive-Index Changes of Standard Telecommunication Fiber through Exposure to Femtosecond Laser Pulses at 810 cm. , 2001, Applied optics.

[105]  Bertrand Poumellec,et al.  Behaviour of spectral transmissions of Bragg gratings written in germania-doped fibres: writing and erasing experiments using pulsed or cw uv exposure , 1994 .

[106]  J. Canning,et al.  Bragg grating in a Fresnel fibre with a water-core , 2005, 2005 IEEE LEOS Annual Meeting Conference Proceedings.

[107]  Bragg gratings in ternary SiO(2):SnO(2):Na(2)O optical glass fibers. , 2000, Optics letters.

[108]  M. Lancry,et al.  Isochronal annealing of BG written either in H/sub 2/-loaded, UV hypersensitized or in OH-flooded standard Telecommunication fibers using ArF laser , 2006, Journal of Lightwave Technology.

[109]  Klaus Sokolowski-Tinten,et al.  Multiphoton ionization in dielectrics: comparison of circular and linear polarization. , 2006 .

[110]  G. Grand,et al.  Low-loss PECVD silica channel waveguides for optical communications , 1990 .

[111]  R. R. Khrapko,et al.  Grating formation in a germanium free silicon oxynitride fibre , 1997 .

[112]  William Primak,et al.  Dependence of the compaction of vitreous silica on the ionization dose , 1978 .

[113]  Sherrie J. Burgett,et al.  Enhanced growth rate for Bragg grating formation in optical fibers with titania-doped outer cladding , 1999 .

[114]  J. Owen,et al.  Paramagnetic Resonance II , 1955 .

[115]  J. Canning,et al.  A study of negative index grating growth in germanosilicate planar waveguides , 1999 .

[116]  M. Lancry,et al.  Comparison Between Plasma Properties And Damage Thresholds In Doped Silica Exposed To IR Temtosecond Laser , 2012 .

[117]  Youcef Ouerdane,et al.  Gamma-rays and pulsed X-ray radiation responses of nitrogen-, germanium-doped and pure silica core optical fibers , 2004 .

[118]  M. Fokine,et al.  Large increase in photosensitivity through massive hydroxyl formation. , 2000, Optics letters.

[119]  Ian Bennion,et al.  Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser , 2005 .

[120]  Stavros Pissadakis,et al.  Photosensitivity of germanosilicate fibers using 213nm, picosecond Nd:YAG radiation. , 2005, Optics express.

[121]  D C Johnson,et al.  Photosensitivity in Ge-doped silica optical waveguides and fibers with 193-nm light from an ArF excimer laser. , 1994, Optics letters.

[122]  Hans G. Limberger,et al.  Compaction- and photoelastic-induced index changes in fiber Bragg gratings , 1996 .

[123]  Victor Mizrahi,et al.  Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses , 1993 .

[124]  A. Gaeta,et al.  Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses. , 1999, Optics letters.

[125]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[126]  M. Lancry,et al.  Mechanisms of photosensitivity enhancement in OH-flooded standard germanosilicate preform plates , 2007 .

[127]  William Primak,et al.  The Radiation Compaction of Vitreous Silica , 1968 .

[128]  Guido Perrone,et al.  Channel waveguide fabrication by ion exchange in a new photosensitive glass , 1998, Photonics West.

[129]  Stephen A. Slattery,et al.  Long-period fiber grating inscription under high-intensity 352 nm femtosecond irradiation: Three-photon absorption and energy deposition in cladding , 2005 .

[130]  A. L. Tomashuk,et al.  Low-hydrogen silicon oxynitride optical fibers prepared by SPCVD , 1995 .

[131]  W. Primak Radiation Behavior of Vitreous Silica , 1978 .

[133]  Optical power transversely scattered from fiber Bragg gratings: far-field measurements and modeling , 1997 .

[134]  David N. Payne,et al.  Ultraviolet absorption in modified chemical vapor deposition preforms , 1994 .

[135]  J. Nishii,et al.  Ultraviolet-radiation-induced chemical reactions through one and two-photon absorption processes in GeO(2)-SiO(2) glasses. , 1995, Optics letters.

[136]  Douglas C. Allan,et al.  Densification of fused silica under 193-nm excitation , 1997 .

[137]  R. R. Khrapko,et al.  STRONG BRAGG GRATINGS FORMATION IN GERMANIUM-FREE NITROGEN-DOPED SILICA FD3ERS , 1997 .

[138]  Jacques Albert,et al.  Grating formation in pure silica-core fibers. , 2002, Optics letters.

[139]  D. Allan,et al.  193-nm excimer-laser-induced densification of fused silica. , 1996, Optics letters.

[140]  Kazuya Saito,et al.  Effects of fluorine on structure, structural relaxation, and absorption edge in silica glass , 2002 .

[141]  Bertrand Poumellec,et al.  UV-induced stress field during Bragg grating inscription in optical fibres , 2001 .

[142]  N. Dragomir,et al.  two-photon excitation , 2009 .

[143]  Changsik Yoo An open-loop clock deskewing circuit for high-speed synchronous DRAM , 2003 .

[144]  K. Oh,et al.  Suppression of cladding-mode coupling loss in fiber Bragg gratings by independent control of refractive index and photosensitive profiles in a single-mode optical fiber , 2000, IEEE Photonics Technology Letters.

[145]  S. Mihailov,et al.  Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask. , 2005, Optics express.

[146]  Norberto Chiodini,et al.  Mechanisms responsible for the ultraviolet photosensitivity of SnO 2 -doped silica , 2001 .

[147]  V. Grubsky,et al.  Photochemical reaction of hydrogen with germanosilicate glass initiated by 3.4 5.4-eV ultraviolet light. , 1999, Optics letters.

[148]  I. Riant,et al.  Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging , 1997 .

[149]  Linards Skuja,et al.  F-doped and H2-impregnated synthetic SiO2 glasses for 157 nm optics , 1999 .

[150]  Norberto Chiodini,et al.  Sol-gel synthesis of monolithic tin-doped silica glass , 1999 .

[151]  H. Hosono,et al.  Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping , 2004 .

[152]  Jacques Albert,et al.  Comparison of one‐photon and two‐photon effects in the photosensitivity of germanium‐doped silica optical fibers exposed to intense ArF excimer laser pulses , 1995 .

[153]  John Canning,et al.  Gratings in structured optical fibres , 2008 .

[154]  Bruno Leconte Contribution à l'étude de la photosensibilité des fibres en silice sous l'effet d'une insolation par un laser à ArF , 1998 .

[155]  Peter R. Herman,et al.  Laser machining of single-mode rib waveguides on germanosilicate slabs , 1997, Photonics West.

[156]  Bertrand Poumellec,et al.  The UV-induced refractive index grating in Ge: preforms: additional CW experiments and the macroscopic origin of the change in index , 1996 .

[157]  L. Skuja Optically active oxygen-deficiency-related centers in amorphous silicon dioxide , 1998 .

[158]  I. Bennion,et al.  Thermal annealing of fiber Bragg gratings directly inscribed by an ultrafast infrared laser , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[159]  Christos Riziotis,et al.  Rapid heat treatment for photosensitivity locking in deuterium-loaded planar optical waveguides , 2001 .

[160]  A. L. Tomashuk,et al.  Nitrogen doped silica core fibres: a new type of radiation-resistant fibre , 1995 .

[161]  K. Hill,et al.  Fiber Bragg grating technology fundamentals and overview , 1997 .