MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications

AbstractThe Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given.By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses i...

[1]  Max J. Suarez,et al.  A Solar Radiation Parameterization for Atmospheric Studies , 2013 .

[2]  Randal D. Koster,et al.  A Catchment-Based Approach to Modeling Land Surface Processes in a Gcm, Part 1: Model Structure , 2013 .

[3]  Michael G. Bosilovich,et al.  Global Energy and Water Budgets in MERRA , 2011 .

[4]  Michael A. Brunke,et al.  An Assessment of the Uncertainties in Ocean Surface Turbulent Fluxes in 11 Reanalysis, Satellite-Derived, and Combined Global Datasets , 2011 .

[5]  M. Bosilovich,et al.  The Effect of Satellite Observing System Changes on MERRA Water and Energy Fluxes , 2011 .

[6]  S. Schubert,et al.  Warm Season Subseasonal Variability and Climate Extremes in the Northern Hemisphere: The Role of Stationary Rossby Waves , 2011 .

[7]  Observed Decadal Changes in Downward Wave Coupling between the Stratosphere and Troposphere in the Southern Hemisphere , 2011 .

[8]  John S. Kimball,et al.  Evaluation of MERRA Land Surface Estimates in Preparation for the Soil Moisture Active Passive Mission , 2011 .

[9]  M. Bosilovich,et al.  The Moisture Budget of the Polar Atmosphere in MERRA , 2011 .

[10]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[11]  D. Dee,et al.  Comments on “Reanalyses Suitable for Characterizing Long-Term Trends” , 2011 .

[12]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[13]  M. Chin,et al.  Online simulations of global aerosol distributions in the NASA GEOS‐4 model and comparisons to satellite and ground‐based aerosol optical depth , 2010 .

[14]  Fuzhong Weng,et al.  On water vapor Jacobian in fast radiative transfer model , 2010 .

[15]  Russell S. Vose,et al.  Reanalyses Suitable for Characterizing Long-Term Trends , 2010 .

[16]  D. Dee,et al.  Toward a consistent reanalysis of the upper stratosphere based on radiance measurements from SSU and AMSU‐A , 2009 .

[17]  D. Dee,et al.  Variational bias correction of satellite radiance data in the ERA‐Interim reanalysis , 2009 .

[18]  P. Jones,et al.  The Twentieth Century Reanalysis Project , 2009 .

[19]  Ricardo Todling,et al.  The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0 , 2008 .

[20]  V. Kumar,et al.  Systematic Differences in Aircraft and Radiosonde Temperatures , 2008 .

[21]  James M. Russell,et al.  The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses , 2008 .

[22]  John J. Barnett,et al.  Temperature trends derived from Stratospheric Sounding Unit radiances: The effect of increasing CO2 on the weighting function , 2008 .

[23]  N. Livesey,et al.  Stratospheric transport using 6‐h‐averaged winds from a data assimilation system , 2007 .

[24]  P. Bernath,et al.  The high Arctic in extreme winters: vortex, temperature, and MLS and ACE-FTS trace gas evolution , 2007 .

[25]  Leopold Haimberger,et al.  Homogenization of Radiosonde Temperature Time Series Using Innovation Statistics , 2007 .

[26]  Jean-Luc Moncet,et al.  A comparison of radiative transfer models for simulating Atmospheric Infrared Sounder (AIRS) radiances , 2007 .

[27]  Gregory G. Leptoukh,et al.  Online analysis enhances use of NASA Earth science data , 2007 .

[28]  Julio T. Bacmeister,et al.  Rain Reevaporation, Boundary Layer Convection Interactions, and Pacific Rainfall Patterns in an AGCM , 2006 .

[29]  Changyong Cao,et al.  Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses , 2006 .

[30]  Jing Guo,et al.  Construction and application of covariance functions with variable length‐fields , 2006 .

[31]  Yong Han,et al.  Atmospheric transmittance of an absorbing gas. 7. Further improvements to the OPTRAN 6 approach. , 2006, Applied optics.

[32]  Fuzhong Weng,et al.  JCSDA Community Radiative Transfer Model (CRTM) : version 1 , 2006 .

[33]  D. Bromwich,et al.  Evaluation of the NCEP NCAR and ECMWF 15- and 40-Yr Reanalyses Using Rawinsonde Data from Two Independent Arctic Field Experiments* , 2005 .

[34]  Paul Poli,et al.  Diagnosis of observation, background and analysis‐error statistics in observation space , 2005 .

[35]  T. Ose,et al.  JRA‐25: Japanese 25‐year re‐analysis project—progress and status , 2005 .

[36]  D. P. DEE,et al.  Bias and data assimilation , 2005 .

[37]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[38]  L. Gray,et al.  Tropical stratospheric zonal winds in ECMWF ERA‐40 reanalysis, rocketsonde data, and rawinsonde data , 2005 .

[39]  Shian‐Jiann Lin A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models , 2004 .

[40]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[41]  N. Roberts,et al.  Numerical Aspects of the Application of Recursive Filters to Variational Statistical Analysis. Part II: Spatially Inhomogeneous and Anisotropic General Covariances , 2003 .

[42]  Lars Isaksen,et al.  Use and impact of automated aircraft data in a global 4DVAR data assimilation system , 2003 .

[43]  R. Eskridge,et al.  Unexplained Discontinuity in the U.S. Radiosonde Temperature Data. Part II: Stratosphere , 2003 .

[44]  R. Purser,et al.  Three-Dimensional Variational Analysis with Spatially Inhomogeneous Covariances , 2002 .

[45]  Thomas M. Smith,et al.  An Improved In Situ and Satellite SST Analysis for Climate , 2002 .

[46]  Dong-Bin Shin,et al.  The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors , 2001 .

[47]  Xin-Zhong Liang,et al.  A Thermal Infrared Radiation Parameterization for Atmospheric Studies , 2001 .

[48]  W. Collins,et al.  The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation , 2001 .

[49]  Praveen Kumar,et al.  A catchment‐based approach to modeling land surface processes in a general circulation model: 1. Model structure , 2000 .

[50]  G. Martin,et al.  A New Boundary Layer Mixing Scheme. Part I: Scheme Description and Single-Column Model Tests , 2000 .

[51]  Dick Dee,et al.  Maximum-Likelihood Estimation of Forecast and Observation Error Covariance Parameters. Part I: Methodology , 1999 .

[52]  Frank J. Wentz,et al.  A Well Calibrated Ocean Algorithm for SSM/I , 1999 .

[53]  John Derber,et al.  The Use of TOVS Cloud-Cleared Radiances in the NCEP SSI Analysis System , 1998 .

[54]  M. Fiorino,et al.  A comparison of reanalyses in the tropical stratosphere. Part 2: the quasi-biennial oscillation , 1998 .

[55]  Steven Pawson,et al.  A comparison of reanalyses in the tropical stratosphere. Part 1: thermal structure and the annual cycle , 1998 .

[56]  James M. Russell,et al.  Seasonal Cycles and QBO Variations in Stratospheric CH4 and H2O Observed in UARS HALOE Data , 1998 .

[57]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[58]  F. Wentz A well‐calibrated ocean algorithm for special sensor microwave / imager , 1997 .

[59]  Dick Dee,et al.  Ooce Note Series on Global Modeling and Data Assimilation Maximum-likelihood Estimation of Forecast and Observation Error Covariance Parameters , 2022 .

[60]  Lawrence L. Takacs,et al.  Data Assimilation Using Incremental Analysis Updates , 1996 .

[61]  Fuzhong Weng,et al.  An eight-year (1987-1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements , 1996 .

[62]  Rolando R. Garcia,et al.  'Downward control' of the mean meridional circulation and temperature distribution of the polar winter stratosphere , 1994 .

[63]  Richard B. Rood,et al.  An assimilated dataset for Earth science applications , 1993 .

[64]  S. Moorthi,et al.  Relaxed Arakawa-Schubert - A parameterization of moist convection for general circulation models , 1992 .

[65]  S. A. Snyder,et al.  Determination of oceanic total precipitable water from the SSM/I , 1990 .

[66]  A. Hollingsworth,et al.  The verification of objective analyses: Diagnostics of analysis system performance , 1989 .

[67]  Norman A. McFarlane,et al.  The Effect of Orographically Excited Gravity Wave Drag on the General Circulation of the Lower Stratosphere and Troposphere , 1987 .

[68]  R.,et al.  Numerical Aspects of the Application of Recursive Filters to Variational Statistical Analysis. Part I: Spatially Homogeneous and Isotropic Gaussian Covariances , 2022 .