Hybrid self-adaptive cuckoo search for global optimization

Abstract Adaptation and hybridization typically improve the performances of original algorithm. This paper proposes a novel hybrid self-adaptive cuckoo search algorithm, which extends the original cuckoo search by adding three features, i.e., a balancing of the exploration search strategies within the cuckoo search algorithm, a self-adaptation of cuckoo search control parameters and a linear population reduction. The algorithm was tested on 30 benchmark functions from the CEC-2014 test suite, giving promising results comparable to the algorithms, like the original differential evolution (DE) and original cuckoo search (CS), some powerful variants of modified cuckoo search (i.e., MOCS, CS-VSF) and self-adaptive differential evolution (i.e., jDE, SaDE), while overcoming the results of a winner of the CEC-2014 competition L-Shade remains a great challenge for the future.

[1]  Pauline Ong,et al.  Adaptive Cuckoo Search Algorithm for Unconstrained Optimization , 2014, TheScientificWorldJournal.

[2]  Ling Wang,et al.  An effective co-evolutionary differential evolution for constrained optimization , 2007, Appl. Math. Comput..

[3]  Jing Wang,et al.  Swarm Intelligence in Cellular Robotic Systems , 1993 .

[4]  Broderick Crawford,et al.  A Binary Cuckoo Search Algorithm for Solving the Set Covering Problem , 2015, IWINAC.

[5]  Siamak Talatahari,et al.  An improved ant colony optimization for constrained engineering design problems , 2010 .

[6]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[7]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[8]  Roberto Antonio Vázquez,et al.  Training spiking neural models using cuckoo search algorithm , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[9]  KarabogaDervis,et al.  A powerful and efficient algorithm for numerical function optimization , 2007 .

[10]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[11]  G. Di Caro,et al.  Ant colony optimization: a new meta-heuristic , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[12]  István Erlich,et al.  Evaluating the Mean-Variance Mapping Optimization on the IEEE-CEC 2014 test suite , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[13]  Xiangtao Li,et al.  Modified cuckoo search algorithm with self adaptive parameter method , 2015, Inf. Sci..

[14]  Hee Sik Kim,et al.  (n − 1)-Step Derivations on n-Groupoids: The Case n = 3 , 2014, TheScientificWorldJournal.

[15]  Andrés Iglesias,et al.  Cuckoo Search with Lévy Flights for Weighted Bayesian Energy Functional Optimization in Global-Support Curve Data Fitting , 2014, TheScientificWorldJournal.

[16]  Francesca Mangili,et al.  Should We Really Use Post-Hoc Tests Based on Mean-Ranks? , 2015, J. Mach. Learn. Res..

[17]  N. Jawahar,et al.  A hybrid cuckoo search and genetic algorithm for reliability-redundancy allocation problems , 2013, Comput. Ind. Eng..

[18]  CrepinsekMatej,et al.  Exploration and exploitation in evolutionary algorithms , 2013 .

[19]  Qidi Wu,et al.  Modified Adaptive Cuckoo Search (MACS) algorithm and formal description for global optimisation , 2012, Int. J. Comput. Appl. Technol..

[20]  Janez Brest,et al.  Self-adaptive control parameters' randomization frequency and propagations in differential evolution , 2015, Swarm Evol. Comput..

[21]  BrestJ.,et al.  Self-Adapting Control Parameters in Differential Evolution , 2006 .

[22]  Dervis Karaboga,et al.  On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation , 2015, Inf. Sci..

[23]  Salim Chikhi,et al.  Solving 0-1 knapsack problems by a discrete binary version of cuckoo search algorithm , 2012, Int. J. Bio Inspired Comput..

[24]  Adrian Bonilla-Petriciolet,et al.  On the Effectiveness of Nature-Inspired Metaheuristic Algorithms for Performing Phase Equilibrium Thermodynamic Calculations , 2014, TheScientificWorldJournal.

[25]  Yafei Huang,et al.  An effective hybrid cuckoo search algorithm for constrained global optimization , 2014, Neural Computing and Applications.

[26]  Ramalingam Gomathi,et al.  A Novel Adaptive Cuckoo Search for Optimal Query Plan Generation , 2014, TheScientificWorldJournal.

[27]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[28]  Ling Wang,et al.  An effective co-evolutionary particle swarm optimization for constrained engineering design problems , 2007, Eng. Appl. Artif. Intell..

[29]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[30]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[31]  Janez Brest,et al.  A Brief Review of Nature-Inspired Algorithms for Optimization , 2013, ArXiv.

[32]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[33]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[34]  Janez Brest,et al.  Self-adaptive differential evolution algorithm using population size reduction and three strategies , 2011, Soft Comput..

[35]  Alex S. Fukunaga,et al.  Improving the search performance of SHADE using linear population size reduction , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[36]  Kenneth Morgan,et al.  Modified cuckoo search: A new gradient free optimisation algorithm , 2011 .

[37]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[38]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[39]  Janez Brest,et al.  Memetic artificial bee colony algorithm for large-scale global optimization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[40]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[41]  Janez Brest,et al.  A comprehensive review of firefly algorithms , 2013, Swarm Evol. Comput..

[42]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[43]  Ponnuthurai Nagaratnam Suganthan,et al.  Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization , 2014 .

[44]  Singiresu S. Rao Engineering Optimization : Theory and Practice , 2010 .

[45]  Marjan Mernik,et al.  Exploration and exploitation in evolutionary algorithms: A survey , 2013, CSUR.

[46]  M. Friedman A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings , 1940 .

[47]  Xin-She Yang,et al.  BCS: A Binary Cuckoo Search algorithm for feature selection , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).

[48]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[49]  Seif-Eddeen K. Fateen,et al.  Unconstrained Gibbs Free Energy Minimization for Phase Equilibrium Calculations in Nonreactive Systems, Using an Improved Cuckoo Search Algorithm , 2014 .

[50]  John R. Koza,et al.  Genetic programming 2 - automatic discovery of reusable programs , 1994, Complex adaptive systems.

[51]  Janez Brest,et al.  Population size reduction for the differential evolution algorithm , 2008, Applied Intelligence.

[52]  Carlos A. Coello Coello,et al.  Hybridizing a genetic algorithm with an artificial immune system for global optimization , 2004 .

[53]  Carlos A. Coello Coello,et al.  Engineering optimization using simple evolutionary algorithm , 2003, Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence.

[54]  Dipankar Dasgupta,et al.  Information processing in the immune system , 1999 .

[55]  Tapabrata Ray,et al.  ENGINEERING DESIGN OPTIMIZATION USING A SWARM WITH AN INTELLIGENT INFORMATION SHARING AMONG INDIVIDUALS , 2001 .

[56]  Iztok Fister,et al.  A comprehensive review of firefly algorithms , 2013, Swarm Evol. Comput..

[57]  S. García,et al.  An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons , 2008 .

[58]  Xin-She Yang,et al.  Multiobjective cuckoo search for design optimization , 2013, Comput. Oper. Res..

[59]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[60]  Li Chen,et al.  TAGUCHI-AIDED SEARCH METHOD FOR DESIGN OPTIMIZATION OF ENGINEERING SYSTEMS , 1998 .

[61]  Yilong Yin,et al.  Cuckoo search with varied scaling factor , 2015, Frontiers of Computer Science.

[62]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[63]  Praveen Ranjan Srivastava,et al.  Test Data Generation: A Hybrid Approach Using Cuckoo and Tabu Search , 2011, SEMCCO.

[64]  Min-Yuan Cheng,et al.  Symbiotic Organisms Search: A new metaheuristic optimization algorithm , 2014 .

[65]  Xin-She Yang,et al.  Design optimization of truss structures using cuckoo search algorithm , 2013 .

[66]  Marjan Mernik,et al.  A chess rating system for evolutionary algorithms: A new method for the comparison and ranking of evolutionary algorithms , 2014, Inf. Sci..

[67]  Tapabrata Ray,et al.  A socio-behavioural simulation model for engineering design optimization , 2002 .

[68]  Iztok Fister,et al.  Adaptation and Hybridization in Nature-Inspired Algorithms , 2015 .