On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells

In this communication we discuss, by means of the metal reducing bacterium Geobacter sulfurreducens, a strategy to use cyclic voltammetry for the study of anodic bioelectrocatalytic electron transfer in microbial fuel cells.

[1]  D. Lovley,et al.  Evidence that OmcB and OmpB of Geobacter sulfurreducens are outer membrane surface proteins. , 2007, FEMS microbiology letters.

[2]  Byung Hong Kim,et al.  A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell , 2001 .

[3]  Byung Hong Kim,et al.  A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens , 2002 .

[4]  Shweta Srikanth,et al.  Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes , 2008, Biotechnology and bioengineering.

[5]  D. R. Bond,et al.  Electrode-Reducing Microorganisms That Harvest Energy from Marine Sediments , 2002, Science.

[6]  Hanxi Yang,et al.  A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. , 2006, Chemical communications.

[7]  J. Fredrickson,et al.  Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes , 2007, Molecular microbiology.

[8]  Feng Zhao,et al.  Interfacing electrocatalysis and biocatalysis with tungsten carbide: a high-performance, noble-metal-free microbial fuel cell. , 2006, Angewandte Chemie.

[9]  Derek R. Lovley,et al.  Bug juice: harvesting electricity with microorganisms , 2006, Nature Reviews Microbiology.

[10]  D. Newman,et al.  Extracellular electron transfer , 2001, Cellular and Molecular Life Sciences CMLS.

[11]  D. R. Bond,et al.  Electricity Production by Geobacter sulfurreducens Attached to Electrodes , 2003, Applied and Environmental Microbiology.

[12]  Stefano Freguia,et al.  Microbial fuel cells: methodology and technology. , 2006, Environmental science & technology.

[13]  U. Schröder Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. , 2007, Physical chemistry chemical physics : PCCP.

[14]  A. Estéve-Núñez,et al.  Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport. , 2008, Environmental science & technology.

[15]  D. R. Bond,et al.  Shewanella secretes flavins that mediate extracellular electron transfer , 2008, Proceedings of the National Academy of Sciences.

[16]  Jürgen Heinze,et al.  Cyclovoltammetrie — die „Spektroskopie”︁ des Elektrochemikers , 1984 .

[17]  D. Lovley,et al.  Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells , 2003, Nature Biotechnology.

[18]  Alice Dohnalkova,et al.  Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Uwe Schröder,et al.  Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells , 2004 .

[20]  W. Verstraete,et al.  Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer , 2004, Applied and Environmental Microbiology.

[21]  Uwe Schröder,et al.  Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell , 2005, Applied Microbiology and Biotechnology.

[22]  D. Lovley,et al.  Isolation, characterization and gene sequence analysis of a membrane-associated 89 kDa Fe(III) reducing cytochrome c from Geobacter sulfurreducens. , 2001, The Biochemical journal.