An iterative MFS approach for the detection of immersed obstacles

An unknown rigid body is immersed in a fluid governed by the Stokes equations in a bounded domain. We consider the inverse problem that consists in determining the location and shape of the solid from boundary measurements on the accessible boundary of the fluid domain. We apply a quasi-Newton method combined with the method of fundamental solutions (MFS) to recover the immersed body in the two-dimensional case.

[1]  A. Bogomolny Fundamental Solutions Method for Elliptic Boundary Value Problems , 1985 .

[2]  Jaime H. Ortega,et al.  A geometric inverse problem for the Boussinesq system , 2006 .

[3]  Antonino Morassi,et al.  Detecting an Inclusion in an Elastic Body by Boundary Measurements , 2002, SIAM Rev..

[4]  R. Kress,et al.  An inverse boundary value problem for the Oseen equation , 2000 .

[5]  The completed double layer boundary integral equation method for two-dimensional Stokes flow , 1993 .

[6]  Rainer Kress,et al.  On an Integral Equation of the first Kind in Inverse Acoustic Scattering , 1986 .

[7]  R. Kress,et al.  Integral equations for an inverse boundary value problem for the two-dimensional Stokes equations , 2007 .

[8]  Harvey Thomas Banks,et al.  Standard errors and confidence intervals in inverse problems: sensitivity and associated pitfalls , 2007 .

[9]  V. D. Kupradze,et al.  The method of functional equations for the approximate solution of certain boundary value problems , 1964 .

[10]  G. Alessandrini,et al.  Detecting cavities by electrostatic boundary measurements , 2002 .

[11]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[12]  Uniqueness and partial identification in a geometric inverse problem for the Boussinesq system , 2006 .

[13]  Kaj Madsen,et al.  Methods for Non-Linear Least Squares Problems , 1999 .

[14]  Carlos J. S. Alves,et al.  On the determination of point-forces on a Stokes system , 2004, Math. Comput. Simul..

[15]  C. Alves,et al.  Density results using Stokeslets and a method of fundamental solutions for the Stokes equations , 2004 .

[16]  Jaime H. Ortega,et al.  Identification of immersed obstacles via boundary measurements , 2005 .

[17]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[18]  Carlos J. S. Alves,et al.  The direct method of fundamental solutions and the inverse Kirsch- Kress method for the reconstruction of elastic inclusions or cavities , 2009 .