Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes

[1]  G. G. Eshetu,et al.  Customizing Active Materials and Polymeric Binders: Stern Requirements to Realize Silicon-Graphite Anode Based Lithium-Ion Batteries. , 2021 .

[2]  M. Winter,et al.  Si-on-Graphite fabricated by fluidized bed process for high-capacity anodes of Li-ion batteries , 2021, Chemical Engineering Journal.

[3]  Xinzhi Li,et al.  Research Progress of Silicon/Carbon Anode Materials for Lithium‐Ion Batteries: Structure Design and Synthesis Method , 2020 .

[4]  V. Lehto,et al.  Challenges and prospects of nanosized silicon anodes in lithium-ion batteries , 2020, Nanotechnology.

[5]  M. Winter,et al.  Electropolymerization Triggered in Situ Surface Modification of Electrode Interphases: Alleviating First-Cycle Lithium Loss in Silicon Anode Lithium-Ion Batteries , 2020 .

[6]  D. Sauer,et al.  The Development of Jelly Roll Deformation in 18650 Lithium-Ion Batteries at Low State of Charge , 2020 .

[7]  M. Winter,et al.  Toward Green Battery Cells: Perspective on Materials and Technologies , 2020 .

[8]  K. Amine,et al.  Bringing forward the development of battery cells for automotive applications: Perspective of R&D activities in China, Japan, the EU and the USA , 2020 .

[9]  Z. Seh,et al.  Conformal Prelithiation Nanoshell on LiCoO2 Enabling High Energy Lithium-Ion Batteries. , 2020, Nano letters.

[10]  Yanbin Shen,et al.  Single-crystal nickel-rich layered-oxide battery cathode materials: synthesis, electrochemistry, and intra-granular fracture , 2020 .

[11]  Jaephil Cho,et al.  Gas phase synthesis of amorphous silicon nitride nanoparticles for high-energy LIBs , 2020 .

[12]  G. G. Eshetu,et al.  Electrolytes and Interphases in Sodium‐Based Rechargeable Batteries: Recent Advances and Perspectives , 2020, Advanced Energy Materials.

[13]  A. Manthiram A reflection on lithium-ion battery cathode chemistry , 2020, Nature Communications.

[14]  Ji‐Guang Zhang,et al.  Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes , 2020, Nature Communications.

[15]  M. Winter,et al.  Tailoring Electrolyte Additives with Synergistic Functional Moieties for Silicon Negative Electrode-Based Lithium Ion Batteries: A Case Study on Lactic Acid O-Carboxyanhydride , 2020 .

[16]  A. Chakraborty,et al.  Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on LiNi1–x–yCoxMnyO2 and LiNi1–x–yCoxAlyO2 , 2020 .

[17]  Donghai Wang,et al.  Supremely elastic gel polymer electrolyte enables a reliable electrode structure for silicon-based anodes , 2019, Nature Communications.

[18]  G. G. Eshetu,et al.  From solid solution electrodes and the rocking-chair concept to today's batteries. , 2019, Angewandte Chemie.

[19]  Datong Song,et al.  Degradation Mechanisms and Mitigation Strategies of Nickel-Rich NMC-Based Lithium-Ion Batteries , 2019, Electrochemical Energy Reviews.

[20]  Chenglin Yan,et al.  Trifluoropropylene Carbonate‐Driven Interface Regulation Enabling Greatly Enhanced Lithium Storage Durability of Silicon‐Based Anodes , 2019, Advanced Functional Materials.

[21]  Zaiping Guo,et al.  The critical role of carbon in marrying silicon and graphite anodes for high‐energy lithium‐ion batteries , 2019, Carbon Energy.

[22]  G. G. Eshetu,et al.  The Role of Electrolyte Additives on the Interfacial Chemistry and Thermal Reactivity of Si-Anode-Based Li-Ion Battery , 2019, ACS Applied Energy Materials.

[23]  Haixia Li,et al.  Structure design and mechanism analysis of silicon anode for lithium-ion batteries , 2019, Science China Materials.

[24]  Liangbing Hu,et al.  Thick Electrode Batteries: Principles, Opportunities, and Challenges , 2019, Advanced Energy Materials.

[25]  Ji‐Guang Zhang,et al.  High‐Performance Silicon Anodes Enabled By Nonflammable Localized High‐Concentration Electrolytes , 2019, Advanced Energy Materials.

[26]  M. Al-Mamun,et al.  A Yolk-Shell Structured Silicon Anode with Superior Conductivity and High Tap Density for Full Lithium-Ion Batteries. , 2019, Angewandte Chemie.

[27]  G. G. Eshetu,et al.  Confronting the Challenges of Next-Generation Silicon Anode-Based Lithium-Ion Batteries: Role of Designer Electrolyte Additives and Polymeric Binders. , 2019, ChemSusChem.

[28]  Julien Demeaux,et al.  The Impact of CO2 Evolved from VC and FEC during Formation of Graphite Anodes in Lithium-Ion Batteries , 2019, Journal of The Electrochemical Society.

[29]  Jun Lu,et al.  Commercialization of Lithium Battery Technologies for Electric Vehicles , 2019, Advanced Energy Materials.

[30]  Hong Li,et al.  Practical Evaluation of Li-Ion Batteries , 2019, Joule.

[31]  G. G. Eshetu,et al.  Polymeric ionic liquids for lithium-based rechargeable batteries , 2019, Molecular Systems Design & Engineering.

[32]  Jang Wook Choi,et al.  Prospect for Supramolecular Chemistry in High-Energy-Density Rechargeable Batteries , 2019, Joule.

[33]  Yong Lu,et al.  Recent progress on lithium-ion batteries with high electrochemical performance , 2019, Science China Chemistry.

[34]  Jun Lu,et al.  Bridging the academic and industrial metrics for next-generation practical batteries , 2019, Nature Nanotechnology.

[35]  Ke Pan,et al.  Systematic electrochemical characterizations of Si and SiO anodes for high-capacity Li-Ion batteries , 2019, Journal of Power Sources.

[36]  P. Li,et al.  Nano/Microstructured Silicon-Graphite Composite Anode for High-Energy-Density Li-Ion Battery. , 2019, ACS nano.

[37]  Jun Lu,et al.  Trifunctional Electrode Additive for High Active Material Content and Volumetric Lithium‐Ion Electrode Densities , 2019, Advanced Energy Materials.

[38]  Yunlong Zhao,et al.  Silicon oxides: a promising family of anode materials for lithium-ion batteries. , 2019, Chemical Society reviews.

[39]  Martin Winter,et al.  Theoretical versus Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems , 2018, Advanced Energy Materials.

[40]  C. Liang,et al.  Aligning academia and industry for unified battery performance metrics , 2018, Nature Communications.

[41]  Heng Zhang,et al.  Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. , 2018, Angewandte Chemie.

[42]  L. M. Rodriguez-Martinez,et al.  Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes , 2018, Joule.

[43]  Asbjørn Ulvestad,et al.  Silicon nitride as anode material for Li-ion batteries: Understanding the SiNx conversion reaction , 2018, Journal of Power Sources.

[44]  Jaephil Cho,et al.  Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries , 2018 .

[45]  Asbjørn Ulvestad,et al.  Substoichiometric Silicon Nitride – An Anode Material for Li-ion Batteries Promising High Stability and High Capacity , 2018, Scientific Reports.

[46]  Khalil Amine,et al.  Perspectives of automotive battery R&D in China, Germany, Japan, and the USA , 2018 .

[47]  M. Winter,et al.  Performance and cost of materials for lithium-based rechargeable automotive batteries , 2018 .

[48]  J. Choi,et al.  The emerging era of supramolecular polymeric binders in silicon anodes. , 2018, Chemical Society reviews.

[49]  Evan M. Erickson,et al.  Review on Challenges and Recent Advances in the Electrochemical Performance of High Capacity Li‐ and Mn‐Rich Cathode Materials for Li‐Ion Batteries , 2018 .

[50]  J. Seminario,et al.  Dendrite formation in silicon anodes of lithium-ion batteries , 2018, RSC advances.

[51]  Yan Jin,et al.  Challenges and Recent Progress in the Development of Si Anodes for Lithium‐Ion Battery , 2017 .

[52]  Sang‐young Lee,et al.  All‐Nanomat Lithium‐Ion Batteries: A New Cell Architecture Platform for Ultrahigh Energy Density and Mechanical Flexibility , 2017 .

[53]  J. Janek,et al.  The Critical Role of Fluoroethylene Carbonate in the Gassing of Silicon Anodes for Lithium-Ion Batteries , 2017 .

[54]  D. Andre,et al.  Future high-energy density anode materials from an automotive application perspective , 2017 .

[55]  Jaephil Cho,et al.  One‐to‐One Comparison of Graphite‐Blended Negative Electrodes Using Silicon Nanolayer‐Embedded Graphite versus Commercial Benchmarking Materials for High‐Energy Lithium‐Ion Batteries , 2017 .

[56]  Stefan A. Freunberger,et al.  True performance metrics in beyond-intercalation batteries , 2017, Nature Energy.

[57]  Wangda Li,et al.  High-voltage positive electrode materials for lithium-ion batteries. , 2017, Chemical Society reviews.

[58]  Martin Winter,et al.  Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density , 2017, Journal of Solid State Electrochemistry.

[59]  Yingjie Zhang,et al.  Stabilizing interface layer of LiNi0.5Co0.2Mn0.3O2 cathode materials under high voltage using p-toluenesulfonyl isocyanate as film forming additive , 2017 .

[60]  Zhijia Du,et al.  Fast formation cycling for lithium ion batteries , 2017 .

[61]  Sung You Hong,et al.  Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries , 2017 .

[62]  M. Winter,et al.  Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency , 2016 .

[63]  Yayuan Liu,et al.  Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility , 2016, Proceedings of the National Academy of Sciences.

[64]  Chae-Ho Yim,et al.  Towards Improving the Practical Energy Density of Li-Ion Batteries: Optimization and Evaluation of Silicon:Graphite Composites in Full Cells , 2016 .

[65]  Fredrik J. Lindgren,et al.  SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries. , 2016, ACS applied materials & interfaces.

[66]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[67]  Bin Zhu,et al.  Scalable Production of Si Nanoparticles Directly from Low Grade Sources for Lithium-Ion Battery Anode. , 2015, Nano letters.

[68]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[69]  Claus Daniel,et al.  Prospects for reducing the processing cost of lithium ion batteries , 2015 .

[70]  Bruno Scrosati,et al.  Energy storage materials synthesized from ionic liquids. , 2014, Angewandte Chemie.

[71]  V. Chevrier,et al.  Alloy negative electrodes for Li-ion batteries. , 2014, Chemical reviews.

[72]  S. Salley,et al.  High capacity silicon nitride-based composite anodes for lithium ion batteries , 2014 .

[73]  Michael J Sailor,et al.  Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes , 2014, Nature Communications.

[74]  P. Moreau,et al.  Very High Surface Capacity Observed Using Si Negative Electrodes Embedded in Copper Foam as 3D Current Collectors , 2014 .

[75]  Soojin Park,et al.  Ultrahigh‐Energy‐Density Lithium‐Ion Batteries Based on a High‐Capacity Anode and a High‐Voltage Cathode with an Electroconductive Nanoparticle Shell , 2014 .

[76]  Yang‐Kook Sun,et al.  A High‐Energy Li‐Ion Battery Using a Silicon‐Based Anode and a Nano‐Structured Layered Composite Cathode , 2014 .

[77]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[78]  S. Nahm,et al.  Microstructures and electrochemical performances of nano-sized SiOx (1.18 ≤ x ≤ 1.83) as an anode material for a lithium(Li)-ion battery , 2013 .

[79]  G. G. Eshetu,et al.  LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: Comparing thermal stabilities and identification of specific SEI-reinforcing additives , 2013 .

[80]  K. Edström,et al.  Improved performances of nanosilicon electrodes using the salt LiFSI: a photoelectron spectroscopy study. , 2013, Journal of the American Chemical Society.

[81]  Yi Cui,et al.  Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes , 2013, Scientific Reports.

[82]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[83]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[84]  Stephen J. Harris,et al.  Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents , 2009 .

[85]  R. Schlögl,et al.  Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. , 2008, Angewandte Chemie.

[86]  M. Armand,et al.  Building better batteries , 2008, Nature.

[87]  N. Choi,et al.  Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte , 2007 .

[88]  Mark N. Obrovac,et al.  Alloy Design for Lithium-Ion Battery Anodes , 2007 .

[89]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[90]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[91]  Edward J. Plichta,et al.  An Improved Li / Li x CoO2 Rechargeable Cell , 1989 .

[92]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[93]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-silicon system. [415/sup 0/C] , 1981 .

[94]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[95]  B. Steele,et al.  Titanium disulphide: A solid solution electrode for sodium and lithium , 1976 .

[96]  Li Liu,et al.  Design and Testing of Prelithiated Full Cells with High Silicon Content , 2018 .

[97]  M. Wohlfahrt‐Mehrens,et al.  Energy Density of Cylindrical Li-Ion Cells: A Comparison of Commercial 18650 to the 21700 Cells , 2018 .

[98]  L. Krause,et al.  The Effect of Carbon Dioxide on the Cycle Life and Electrolyte Stability of Li-Ion Full Cells Containing Silicon Alloy , 2017 .

[99]  Yang-Kook Sun,et al.  Nickel‐Rich and Lithium‐Rich Layered Oxide Cathodes: Progress and Perspectives , 2016 .

[100]  James A. Gilbert,et al.  Performance of Full Cells Containing Carbonate-Based LiFSI Electrolytes and Silicon-Graphite Negative Electrodes , 2016 .

[101]  Y. Cuia,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .