Mathematics of Smoothed Particle Hydrodynamics, Part I: a Nonlocal Stokes Equation

Smoothed Particle Hydrodynamics (SPH) is a popular numerical technique developed for simulating complex fluid flows. Among its key ingredients is the use of nonlocal integral relaxations to local differentiations. Mathematical analysis of the corresponding nonlocal models on the continuum level can provide further theoretical understanding of SPH. We present, in this part of a series of works on the mathematics of SPH, a nonlocal relaxation to the conventional linear steady state Stokes system for incompressible viscous flows. The nonlocal continuum model is characterized by a smoothing length $\delta$ which measures the range of nonlocal interactions. It serves as a bridge between the discrete approximation schemes that involve a nonlocal integral relaxation and the local continuum models. We show that for a class of carefully chosen nonlocal operators, the resulting nonlocal Stokes equation is well-posed and recovers the original Stokes equation in the local limit when $\delta$ approaches zero. We also discuss the implications of our finding on the design of numerical methods.

[1]  Ted Belytschko,et al.  A meshfree unification: reproducing kernel peridynamics , 2014, Computational Mechanics.

[2]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments , 2010 .

[3]  P. Degond,et al.  The weighted particle method for convection-diffusion equations , 1989 .

[4]  Nikolaus A. Adams,et al.  An incompressible multi-phase SPH method , 2007, J. Comput. Phys..

[5]  Ivo F. Sbalzarini,et al.  Discretization correction of general integral PSE Operators for particle methods , 2010, J. Comput. Phys..

[6]  Qiang Du,et al.  Mathematical Models and Methods in Applied Sciences c ○ World Scientific Publishing Company Sandia National Labs SAND 2010-8353J A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS , 2022 .

[7]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[8]  Jiang Yang,et al.  Asymptotically Compatible Fourier Spectral Approximations of Nonlocal Allen-Cahn Equations , 2016, SIAM J. Numer. Anal..

[9]  T. Tao Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation , 2009, 0906.3070.

[10]  N. Katz,et al.  A cheap Caffarelli—Kohn—Nirenberg inequality for the Navier—Stokes equation with hyper-dissipation , 2001, math/0104199.

[11]  Rui Xu,et al.  Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method , 2008, J. Comput. Phys..

[12]  Andrew J. Majda,et al.  High order accurate vortex methods with explicit velocity kernels , 1985 .

[13]  B. Engquist,et al.  Numerical approximations of singular source terms in differential equations , 2004 .

[14]  Gaurav Tomar,et al.  Volume conservation issues in incompressible smoothed particle hydrodynamics , 2015, J. Comput. Phys..

[15]  Qiang Du,et al.  Asymptotically Compatible Schemes and Applications to Robust Discretization of Nonlocal Models , 2014, SIAM J. Numer. Anal..

[16]  ALBERT COHEN,et al.  Optimal Approximations of Transport Equations by Particle and Pseudoparticle Methods , 2000, SIAM J. Math. Anal..

[17]  Nikolaus A. Adams,et al.  A constant-density approach for incompressible multi-phase SPH , 2009, J. Comput. Phys..

[18]  Eitan Tadmor,et al.  Critical thresholds in flocking hydrodynamics with non-local alignment , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Peter Constantin,et al.  Global regularity for a modified critical dissipative quasi-geostrophic equation , 2008, 0803.1318.

[20]  Qiang Du,et al.  Analysis of a nonlocal-in-time parabolic equation , 2016 .

[21]  S. Shao,et al.  INCOMPRESSIBLE SPH METHOD FOR SIMULATING NEWTONIAN AND NON-NEWTONIAN FLOWS WITH A FREE SURFACE , 2003 .

[22]  Salvatore Marrone,et al.  Numerical diffusive terms in weakly-compressible SPH schemes , 2012, Comput. Phys. Commun..

[23]  Jan Bender,et al.  Divergence-free smoothed particle hydrodynamics , 2015, Symposium on Computer Animation.

[24]  Peter Constantin,et al.  Euler Equations, Navier-Stokes Equations and Turbulence , 2006 .

[25]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[26]  Qiang Du,et al.  The bond-based peridynamic system with Dirichlet-type volume constraint , 2014, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[27]  Qiang Du,et al.  Nonlocal Constrained Value Problems for a Linear Peridynamic Navier Equation , 2014 .

[28]  Jacek Pozorski,et al.  SPH computation of incompressible viscous flows , 2002 .

[29]  Qiang Du,et al.  Stability of Nonlocal Dirichlet Integrals and Implications for Peridynamic Correspondence Material Modeling , 2018, SIAM J. Appl. Math..

[30]  Qiang Du,et al.  Integral approximations to classical diffusion and smoothed particle hydrodynamics , 2015 .

[31]  Pep Español,et al.  Incompressible smoothed particle hydrodynamics , 2007, J. Comput. Phys..

[32]  M. Wardetzky Discrete Differential Operators on Polyhedral Surfaces - Convergence and Approximation , 2007 .

[33]  Alina Chertock,et al.  A Practical Guide to Deterministic Particle Methods , 2017 .

[34]  P. Koumoutsakos MULTISCALE FLOW SIMULATIONS USING PARTICLES , 2005 .

[35]  Ted Belytschko,et al.  A unified stability analysis of meshless particle methods , 2000 .

[36]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[37]  Tim Colonius,et al.  A general deterministic treatment of derivatives in particle methods , 2002 .

[38]  Q. Du,et al.  Characterization of function spaces of vector fields and an application in nonlinear peridynamics , 2016 .

[39]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[40]  Jian Sun,et al.  Point Integral Method for Solving Poisson-type Equations on Manifolds from Point Clouds with Convergence Guarantees , 2014, 1409.2623.

[41]  Ulrike von Luxburg,et al.  From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians , 2005, COLT.

[42]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[43]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[44]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[45]  Qiang Du,et al.  On the variational limit of a class of nonlocal functionals related to peridynamics , 2015 .

[46]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .