Semilocal Convergence Theorem for the Inverse-Free Jarratt Method under New Hölder Conditions

Under the new Hölder conditions, we consider the convergence analysis of the inverse-free Jarratt method in Banach space which is used to solve the nonlinear operator equation. We establish a new semilocal convergence theorem for the inverse-free Jarratt method and present an error estimate. Finally, three examples are provided to show the application of the theorem.

[1]  Ioannis K. Argyros,et al.  The Jarratt method in Banach space setting , 1994 .

[2]  Sergio Amat,et al.  A fast Chebyshev's method for quadratic equations , 2004, Appl. Math. Comput..

[3]  José Antonio Ezquerro,et al.  Fourth-order iterations for solving Hammerstein integral equations , 2009 .

[4]  José Antonio Ezquerro,et al.  On the R-order of the Halley method , 2005 .

[5]  Ramandeep Behl,et al.  Several New Families of Jarratt's Method for Solving Systems of Nonlinear Equations , 2013 .

[6]  Miguel Ángel Hernández,et al.  A variant of the Newton-Kantorovich theorem for nonlinear integral equations of mixed Hammerstein type , 2012, Appl. Math. Comput..

[7]  A. M. Chervyakov,et al.  General solutions of nonlinear equations in the geometric theory of the relativistic string , 1982 .

[8]  Ioannis K. Argyros On the comparison of a weak variant of the Newton-Kantorovich and Miranda theorems , 2004 .

[9]  W. Marsden I and J , 2012 .

[10]  Ioannis K. Argyros,et al.  On the Newton-Kantorovich hypothesis for solving equations , 2004 .

[11]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[12]  Chong Li,et al.  Convergence of Newton's Method and Uniqueness of the Solution of Equations in Banach Spaces II , 2003 .

[13]  José Antonio Ezquerro,et al.  Halley's method for operators with unbounded second derivative , 2007 .

[14]  I. K. Argyros On the solution of undetermined systems of nonlinear equations in Euclidean spaces , 1993 .

[15]  Neil Genzlinger A. and Q , 2006 .

[16]  M. A. Hernández A modification of the classical Kantorovich conditions for Newton's method , 2001 .

[17]  Qingbiao Wu,et al.  Newton-Kantorovich and Smale Uniform Type Convergence Theorem for a Deformed Newton Method in Banach Spaces , 2013 .

[18]  Miguel Ángel Hernández,et al.  A modification of the classic conditions of Newton-Kantorovich for Newton's method , 2013, Math. Comput. Model..

[19]  Mahadevan Ganesh,et al.  Numerical Solvability of Hammerstein Integral Equations of Mixed Type , 1991 .

[20]  Qingbiao Wu,et al.  Convergence Theorem for a Family of New Modified Halley's Method in Banach Space , 2014, J. Appl. Math..

[21]  Ioannis K. Argyros A new convergence theorem for the Jarratt method in Banach space , 1998 .

[22]  A. Holstad Numerical solution of nonlinear equations in chemical speciation calculations , 1999 .

[23]  Diplomová práce,et al.  FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION , 2016 .

[24]  Miguel Ángel Hernández,et al.  An acceleration of Newton's method: Super-Halley method , 2001, Appl. Math. Comput..

[25]  Zhou Yuren,et al.  About Newton method , 2000 .

[26]  Karol Kowalski,et al.  Towards Complete Solutions to Systems of Nonlinear Equations of Many-Electron Theories , 1998 .

[27]  Kiselev,et al.  Stationary and moving intrinsic localized modes in one-dimensional monatomic lattices with cubic and quartic anharmonicity. , 1993, Physical review. B, Condensed matter.

[28]  Xiwen Lu,et al.  A new backtracking inexact BFGS method for symmetric nonlinear equations , 2008, Comput. Math. Appl..