Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents – I. Elastic and square symmetry

Abstract A two-phase parallel fiber-reinforced periodic elastic composite is considered wherein the constituents exhibit transverse isotropy. The fiber cross-section is circular and the periodicity is the same in two orthogonal directions. Simple closed-form formulae are obtained for the effective properties of this composite by means of the asymptotic homogenization method. Numerical computation of these is easy. The analytical solution of the required resulting plane- and antiplane-strain local problems, which turns out to be only three, makes use of potential methods of a complex variable and properties of Weierstrass elliptic and related functions with periods (1,0) and (0,1). Dvorak's universal type of relations for this composite are easily derived in an elementary new way without solving any local problem. This result also applies when the interface may be arbitrarily shaped, but compatible with the square symmetry. Comparison with experimental data is shown. The above results include the situation when one or both phases are isotropic.

[1]  R. Wojnar,et al.  Thermodiffusion in heterogeneous elastic solids and homogenization , 1994 .

[2]  W. A. Smith,et al.  Composite piezoelectrics: Basic research to a practical device , 1988 .

[3]  Rodney Hill,et al.  Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour , 1964 .

[4]  S. O. Kramarov,et al.  Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions , 1989 .

[5]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[6]  B. Auld,et al.  Modeling 1-3 composite piezoelectrics: thickness-mode oscillations , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[7]  E. Hinton,et al.  A review of homogenization and topology optimization III—topology optimization using optimality criteria , 1998 .

[8]  N. Kikuchi,et al.  A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. , 1994, Journal of biomechanics.

[9]  Gilles A. Francfort,et al.  Homogenization and Linear Thermoelasticity , 1983 .

[10]  J. Pastor Homogenization of linear piezoelectric media , 1997 .

[11]  Gérard A. Maugin,et al.  Continuum models and discrete systems , 1990 .

[12]  Marco Avellaneda,et al.  Calculating the performance of 1–3 piezoelectric composites for hydrophone applications: An effective medium approach , 1998 .

[13]  K. Schulgasser Relationships between the effective properties of transversely isotropic piezoelectric composites , 1992 .

[14]  Martin L. Dunn,et al.  Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites , 1993 .

[15]  Shtrikman,et al.  Linear response of two-phase composites with cross moduli: Exact universal relations. , 1989, Physical review. A, General physics.

[16]  E. Sanchez-Palencia,et al.  Homogenization Techniques for Composite Media , 1987 .

[17]  T. Ikeda Fundamentals of piezoelectricity , 1990 .

[18]  J. Unsworth,et al.  Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications , 1989 .

[19]  Noboru Kikuchi,et al.  Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method , 1998 .

[20]  G. Dvorak On uniform fields in heterogeneous media , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[21]  B. A. Auld,et al.  Design of piezocomposites for ultrasonic transducers , 1989 .

[22]  Alain Bourgeat,et al.  Asymptotic homogenization of laminated piezocomposite materials , 1998 .

[23]  E. Hinton,et al.  A review of homogenization and topology optimization I- homogenization theory for media with periodic structure , 1998 .

[24]  J. J. Telega,et al.  Homogenization and thermopiezoelectricity , 1992 .

[25]  S. Goldstein,et al.  Application of homogenization theory to the study of trabecular bone mechanics. , 1991, Journal of biomechanics.

[26]  Z. Hashin,et al.  The Elastic Moduli of Fiber-Reinforced Materials , 1964 .

[27]  Ahmad Safari,et al.  Overview of Fine‐Scale Piezoelectric Ceramic/Polymer Composite Processing , 1995 .

[28]  B. Amaziane,et al.  Numerical Simulation and Homogenization of Two-Phase Flow in Heterogeneous Porous Media , 1991 .

[29]  I. S. Sokolnikoff Mathematical theory of elasticity , 1946 .

[30]  Gérard A. Maugin,et al.  On the linear piezoelectricity of composite materials , 1991 .

[31]  Mechanics of porous media with phase transformations and periodical structures 2. Solutions of local and global problems , 1998 .

[32]  C. Nan Comment on “relationships between the effective properties of transversely isotropic piezoelectric composites” , 1993 .

[33]  Paolo Bisegna,et al.  Variational bounds for the overall properties of piezoelectric composites , 1996 .

[34]  S. Nemat-Nasser,et al.  Universal bounds for effective piezoelectric moduli , 1998 .

[35]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[36]  P. Turner,et al.  The elastic properties of carbon fibres and their composites , 1973 .

[37]  H. Chan,et al.  Electromechanical properties of 1-3 piezoelectric ceramic/piezoelectric polymer composites , 1994 .

[38]  Y. Benveniste,et al.  Uniform fields and universal relations in piezoelectric composites , 1992 .

[39]  N. Kikuchi,et al.  A comparison of homogenization and standard mechanics analyses for periodic porous composites , 1992 .

[40]  Shaker A. Meguid,et al.  Asymptotic homogenization of elastic composite materials with a regular structure , 1994 .

[41]  A. Kolpakov Application of homogenization method to justification of 1-D model for beam of periodic structure having initial stresses , 1998 .

[42]  A. Grekov,et al.  Effective properties of a transversely isotropic piezocomposite with cylindrical inclusions , 1989 .

[43]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[44]  E. Hinton,et al.  A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations , 1998 .

[45]  Sang-Hoon Park,et al.  Asymptotic homogenization of viscoelastic composites with periodic microstructures , 1998 .

[46]  Engineering mechanics of composite structures , 1993 .

[47]  A. Kalamkarov,et al.  Analysis, design, and optimization of composite structures , 1997 .

[48]  J. Bourgat Numerical experiments of the homogenization method , 1979 .

[49]  I. Andrianov,et al.  Perforated plates and shells , 2002 .

[50]  W. A. Smith,et al.  Modeling 1-3 composite piezoelectrics: hydrostatic response , 1993, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[51]  Sia Nemat-Nasser,et al.  On two micromechanics theories for determining micro–macro relations in heterogeneous solids , 1999 .

[52]  Jacques-Louis Lions,et al.  Some Methods in the Mathematical Analysis of Systems and Their Control , 1981 .

[53]  Mechanics of porous media with phase transformations and periodical structures 1. Method of asymptotic averaging , 1998 .

[54]  Homogenization of a Thick Plate Model with Inclusions or Openings Periodically Distributed in the Thickness , 1985 .