Role of the electronic properties of azurin active site in the electron‐transfer process

Electron transfer proteins, such as azurin (a blue copper protein), are promising candidates for the implementation of biomolecular nanoelectronic devices. To understand the details of electron transfer in redox active azurin molecules, we performed plane-wave pseudo-potential density functional theory (DFT) calculations of the protein active site in the two possible oxidation states Cu(I) and Cu(II). The ab initio results are used to discuss how the electronic spectrum and wavefunctions may mediate the shuttling of electrons through the copper ion. We find that the Cu-ligand hybridization is very similar in the two charge states of the metal center, but the energy spectrum changes substantially. This result might indicate important effects of electronic correlations in the redox activity and consequent electron transfer through the Cu site. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005

[1]  R. Marcus,et al.  Electron transfers in chemistry and biology , 1985 .

[2]  Addition energies in semiconductor quantum dots: Role of electron-electron interaction , 1997, cond-mat/9711276.

[3]  Harry B. Gray,et al.  Copper coordination in blue proteins , 2000, JBIC Journal of Biological Inorganic Chemistry.

[4]  B. Roos,et al.  On the relative stability of tetragonal and trigonal Cu(II) complexes with relevance to the blue copper proteins , 1998, JBIC Journal of Biological Inorganic Chemistry.

[5]  Mikael P. Johansson,et al.  The spin distribution in low-spin iron porphyrins. , 2002, Journal of the American Chemical Society.

[6]  D. Salahub,et al.  QM/MM calculations of EPR hyperfine coupling constants in blue copper proteins , 2003 .

[7]  Paolo Facci,et al.  Electron tunnelling through azurin is mediated by the active site Cu ion , 2003 .

[8]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[9]  S. Cannistraro,et al.  Long-term molecular dynamics simulation of copper azurin: structure, dynamics and functionality. , 1999, Biophysical chemistry.

[10]  Björn O. Roos,et al.  On the role of strain in blue copper proteins , 2000, JBIC Journal of Biological Inorganic Chemistry.

[11]  S. Vries,et al.  The methylamine dehydrogenase electron transfer chain , 1998 .

[12]  Roberto Cingolani,et al.  Solid‐State Molecular Rectifier Based on Self‐Organized Metalloproteins , 2002 .

[13]  Ulrich Hohenester,et al.  Quantum phases in artificial molecules , 2001, cond-mat/0105427.

[14]  B. Roos,et al.  The cupric geometry of blue copper proteins is not strained. , 1996, Journal of molecular biology.

[15]  Arieh Warshel,et al.  Frozen density functional free energy simulations of redox proteins: computational studies of the reduction potential of plastocyanin and rusticyanin. , 2003, Journal of the American Chemical Society.

[16]  K. Hodgson,et al.  Ligand K-edge X-ray absorption spectroscopy: a direct probe of ligand-metal covalency. , 2000, Accounts of chemical research.

[17]  U. Rothlisberger,et al.  Ab initio molecular dynamics studies of a synthetic biomimetic model of galactose oxidase , 1999 .

[18]  E T Adman,et al.  Copper protein structures. , 1991, Advances in protein chemistry.

[19]  Edward I. Solomon,et al.  Electronic structure and bonding of the blue copper site in plastocyanin , 1985 .

[20]  R. Mcweeny,et al.  Methods Of Molecular Quantum Mechanics , 1969 .

[21]  A. Gewirth,et al.  Electronic structure of plastocyanin: excited state spectral features , 1988 .

[22]  J. Jezierska,et al.  Hybrid density functional approach to the isotropic and anisotropic hyperfine couplings with 14N and 1H nuclei in the blue copper proteins , 2001 .

[23]  R. Dreizler,et al.  Density Functional Theory: An Approach to the Quantum Many-Body Problem , 1991 .

[24]  G. Loppnow,et al.  EXCITED-STATE CHARGE-TRANSFER DYNAMICS OF AZURIN, A BLUE COPPER PROTEIN, FROM RESONANCE RAMAN INTENSITIES , 1997 .

[25]  James E. Huheey,et al.  Inorganic chemistry; principles of structure and reactivity , 1972 .

[26]  J. G. Snijders,et al.  Density functional theory and molecular dynamics results for copper proteins , 2001 .

[27]  G. Gilardi,et al.  Structure-function correlation of intramolecular electron transfer in wild type and single-site mutated azurins , 1996 .

[28]  E. Solomon,et al.  ELECTRONIC STRUCTURE OF THE REDUCED BLUE COPPER ACTIVE SITE : CONTRIBUTIONS TO REDUCTION POTENTIALS AND GEOMETRY , 1995 .

[29]  Michele Parrinello,et al.  ELECTRONIC STRUCTURE OF THE CU, ZN SUPEROXIDE DISMUTASE ACTIVE SITE AND ITS INTERACTIONS WITH THE SUBSTRATE , 1995 .

[30]  R. Ashoori Electrons in artificial atoms , 1996, Nature.

[31]  Björn O. Roos,et al.  A theoretical study of the copper–cysteine bond in blue copper proteins , 2001 .

[32]  Björn O. Roos,et al.  Relation between the Structure and Spectroscopic Properties of Blue Copper Proteins , 1998 .

[33]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[34]  S. Larsson,et al.  Connection between Structure, Electronic Spectrum, and Electron-Transfer Properties of Blue Copper Proteins , 1995 .

[35]  P. Facci,et al.  Electronic rectification in protein devices , 2003 .

[36]  B. Roos,et al.  Theoretical study of the electronic spectrum of plastocyanin , 1997 .

[37]  U. Ryde,et al.  The influence of axial ligands on the reduction potential of blue copper proteins , 1999, JBIC Journal of Biological Inorganic Chemistry.

[38]  E. Solomon,et al.  Active-site electronic structure contributions to electron-transfer pathways in rubredoxin and plastocyanin : direct versus superexchange , 1993 .

[39]  S. Larsson,et al.  Electron transfer in azurin and the role of aromatic side groups of the protein , 1991 .

[40]  Iraj Daizadeh,et al.  Tunneling matrix element in Ru-modified blue copper proteins: Pruning the protein in search of electron transfer pathways , 1996 .

[41]  Emilio Artacho,et al.  Projection of plane-wave calculations into atomic orbitals , 1995 .

[42]  Jens Enevold Thaulov Andersen,et al.  Molecular Monolayers and Interfacial Electron Transfer of Pseudomonas aeruginosa Azurin on Au(111) , 2000 .

[43]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[44]  Robert K Szilagyi,et al.  Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins. , 2004, Chemical reviews.

[45]  Frank R. Wagner,et al.  The CO/Pt(111) puzzle , 2000 .

[46]  R. Huber,et al.  Crystal structure analysis of oxidized Pseudomonas aeruginosa azurin at pH 5.5 and pH 9.0. A pH-induced conformational transition involves a peptide bond flip. , 1991, Journal of molecular biology.

[47]  A. Sykes Active-site properties of the blue copper proteins , 1991 .

[48]  Peter Comba,et al.  Hybrid quantum mechanics/molecular mechanics studies of the active site of the blue copper proteins amicyanin and rusticyanin , 2001 .

[49]  Robert K Szilagyi,et al.  Electronic structure and its relation to function in copper proteins. , 2002, Current opinion in chemical biology.

[50]  Ulf Ryde,et al.  Structure, strain, and reorganization energy of blue copper models in the protein , 2001 .

[51]  G. Loppnow,et al.  Charge-Transfer Dynamics in Plastocyanin, a Blue Copper Protein, from Resonance Raman Intensities , 1996 .