Fast Spectral Projection Algorithms for Density-Matrix Computations

We present a fast algorithm for the construction of a spectral projector. This algorithm allows us to compute the density matrix, as used in, e.g., the Kohn?Sham iteration, and so obtain the electron density. We compute the spectral projector by constructing the matrix sign function through a simple polynomial recursion. We present several matrix representations for fast computation within this recursion, using bases with controlled space?spatial-frequency localization. In particular we consider wavelet and local cosine bases. Since spectral projectors appear in many contexts, we expect many additional applications of our approach.

[1]  Martin Head-Gordon,et al.  Sparsity of the Density Matrix in Kohn-Sham Density Functional Theory and an Assessment of Linear System-Size Scaling Methods , 1997 .

[2]  M. Teter,et al.  Tight-binding electronic-structure calculations and tight-binding molecular dynamics with localized orbitals. , 1994, Physical review. B, Condensed matter.

[3]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[4]  Martin J. Mohlenkamp A fast transform for spherical harmonics , 1997 .

[5]  Alan Edelman,et al.  Multiscale Computation with Interpolating Wavelets , 1998 .

[6]  Martin,et al.  Linear system-size scaling methods for electronic-structure calculations. , 1995, Physical review. B, Condensed matter.

[7]  Y. Meyer,et al.  Remarques sur l'analyse de Fourier à fenêtre , 1991 .

[8]  B. Alpert A class of bases in L 2 for the sparse representations of integral operators , 1993 .

[9]  Ronald R. Coifman,et al.  Wavelet-Like Bases for the Fast Solution of Second-Kind Integral Equations , 1993, SIAM J. Sci. Comput..

[10]  Xiaobai Sun,et al.  A study of the Invariant Subspace Decomposition Algorithm for banded symmetric matrices , 1994 .

[11]  A. Laub,et al.  The matrix sign function , 1995, IEEE Trans. Autom. Control..

[12]  Vladimir Rokhlin,et al.  An Improved Fast Multipole Algorithm for Potential Fields , 1998, SIAM J. Sci. Comput..

[13]  K AlpertBradley A class of bases in L2 for the sparse representations of integral operators , 1993 .

[14]  M. Victor Wickerhauser,et al.  Adapted wavelet analysis from theory to software , 1994 .

[15]  Colombo,et al.  Efficient linear scaling algorithm for tight-binding molecular dynamics. , 1994, Physical review letters.

[16]  Vladimir Rokhlin,et al.  A Fast Direct Algorithm for the Solution of the Laplace Equation on Regions with Fractal Boundaries , 1994 .

[17]  V. Rokhlin,et al.  A generalized one-dimensional fast multipole method with application to filtering of spherical harmonics , 1998 .

[18]  R. Mcweeny Some Recent Advances in Density Matrix Theory , 1960 .

[19]  R. Silver,et al.  Kernel polynomial method for a nonorthogonal electronic-structure calculation of amorphous diamond , 1997 .

[20]  L. Auslander,et al.  On parallelizable eigensolvers , 1992 .

[21]  Gustavo E. Scuseria,et al.  Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations , 1998 .

[22]  R. Dreizler,et al.  Density Functional Theory: An Approach to the Quantum Many-Body Problem , 1991 .

[23]  Bradley K. Alpert,et al.  A Fast Spherical Filter with Uniform Resolution , 1997 .

[24]  Youhong Huang,et al.  Direct Approach to Density Functional Theory: Heaviside−Fermi Level Operator Using a Pseudopotential Treatment , 1996 .

[25]  Hernández,et al.  Self-consistent first-principles technique with linear scaling. , 1995, Physical review. B, Condensed matter.

[26]  Soler,et al.  Self-consistent order-N density-functional calculations for very large systems. , 1996, Physical review. B, Condensed matter.

[27]  Kohn,et al.  Density functional and density matrix method scaling linearly with the number of atoms. , 1996, Physical review letters.

[28]  Gregory Beylkin,et al.  LU Factorization of Non-standard Forms and Direct Multiresolution Solvers , 1998 .

[29]  Li,et al.  Density-matrix electronic-structure method with linear system-size scaling. , 1993, Physical review. B, Condensed matter.

[30]  Steven Huss-Lederman,et al.  A Parallelizable Eigensolver for Real Diagonalizable Matrices with Real Eigenvalues , 1997, SIAM J. Sci. Comput..