Sensor and Information Fusion for Improved Vision-Based Vehicle Guidance

Sensor fusion is an important area of automated highways and intelligent vehicles research. This article discusses sensor fusion's role in vehicle guidance, general methods for fusing data, and how to organize sensor-fusion activities within a hybrid deliberative-reactive robot architecture.

[1]  Todd Jochem,et al.  Rapidly Adapting Machine Vision for Automated Vehicle Steering , 1996, IEEE Expert.

[2]  Robin R. Murphy,et al.  Biological and cognitive foundations of intelligent sensor fusion , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[3]  Reid Simmons,et al.  Autonomous task control for mobile robots , 1990, Proceedings. 5th IEEE International Symposium on Intelligent Control 1990.

[4]  David Kortenkamp,et al.  Characterizing an Architecture for Intelligent, Reactive Agents , 1995 .

[5]  Yoram Koren,et al.  Histogramic in-motion mapping for mobile robot obstacle avoidance , 1991, IEEE Trans. Robotics Autom..

[6]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[7]  Robin R. Murphy,et al.  Lessons learned in integrating sensing into autonomous mobile robot architectures , 1997, J. Exp. Theor. Artif. Intell..

[8]  Markus Maurer,et al.  VaMoRs-P: an advanced platform for visual autonomous road vehicle guidance , 1995, Other Conferences.

[9]  Tom Henderson,et al.  Logical sensor systems , 1984, J. Field Robotics.