Subcellular mapping of dendritic activity in optic flow processing neurons

[1]  Alexander Borst,et al.  Optogenetic and Pharmacologic Dissection of Feedforward Inhibition in Drosophila Motion Vision , 2014, The Journal of Neuroscience.

[2]  Alexander Borst,et al.  Optogenetic Control of Fly Optomotor Responses , 2013, The Journal of Neuroscience.

[3]  G. Rubin,et al.  A directional tuning map of Drosophila elementary motion detectors , 2013, Nature.

[4]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[5]  Alexander Borst,et al.  Integration of binocular optic flow in cervical neck motor neurons of the fly , 2012, Journal of Comparative Physiology.

[6]  A. Borst,et al.  Integration of binocular optic flow in cervical neck motor neurons of the fly , 2012, Journal of Comparative Physiology A.

[7]  A. Borst,et al.  Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila , 2012, Journal of Comparative Physiology A.

[8]  Bert Sakmann,et al.  Dendritic coding of multiple sensory inputs in single cortical neurons in vivo , 2011, Proceedings of the National Academy of Sciences.

[9]  Nathalie L Rochefort,et al.  Functional mapping of single spines in cortical neurons in vivo , 2011, Nature.

[10]  Timothy D. Hanks,et al.  Elapsed Decision Time Affects the Weighting of Prior Probability in a Perceptual Decision Task , 2011, The Journal of Neuroscience.

[11]  A. Borst,et al.  Neural Action Fields for Optic Flow Based Navigation: A Simulation Study of the Fly Lobula Plate Network , 2011, PloS one.

[12]  Steven J. Cox,et al.  Mathematics for Neuroscientists , 2010 .

[13]  A. Borst,et al.  Fly motion vision. , 2010, Annual review of neuroscience.

[14]  Hongbo Jia,et al.  Dendritic organization of sensory input to cortical neurons in vivo , 2010, Nature.

[15]  Martin Heisenberg,et al.  Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila , 2010, Proceedings of the National Academy of Sciences.

[16]  Martin Egelhaaf,et al.  Localized direction selective responses in the dendrites of visual interneurons of the fly , 2010, BMC Biology.

[17]  A. Borst,et al.  Local and global motion preferences in descending neurons of the fly , 2009, Journal of Comparative Physiology A.

[18]  Fabrizio Gabbiani,et al.  Precise Subcellular Input Retinotopy and Its Computational Consequences in an Identified Visual Interneuron , 2009, Neuron.

[19]  Marla B Feller,et al.  Vision and the establishment of direction-selectivity: a tale of two circuits , 2009, Current Opinion in Neurobiology.

[20]  Johann H. Bollmann,et al.  Subcellular Topography of Visually Driven Dendritic Activity in the Vertebrate Visual System , 2009, Neuron.

[21]  Alexander Borst,et al.  Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons , 2009, Nature Neuroscience.

[22]  Alexander Borst,et al.  Synaptic Organization of Lobula Plate Tangential Cells in Drosophila: Dα7 Cholinergic Receptors , 2009, Journal of neurogenetics.

[23]  Jösch Krotki,et al.  Lobula Plate Tangential Cells in Drosophila melanogaster; Response Properties, Synaptic Organization & Input Channels , 2009 .

[24]  Alexander Borst,et al.  The Morphological Identity of Insect Dendrites , 2008, PLoS Comput. Biol..

[25]  H. Krapp,et al.  Visuomotor Transformation in the Fly Gaze Stabilization System , 2008, PLoS biology.

[26]  Paul D. Barnett,et al.  Sexual Dimorphism in the Hoverfly Motion Vision Pathway , 2008, Current Biology.

[27]  Claude Desplan,et al.  The Color-Vision Circuit in the Medulla of Drosophila , 2008, Current Biology.

[28]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[29]  Alexander Borst,et al.  Reciprocal Inhibitory Connections Within a Neural Network for Rotational Optic-Flow Processing , 2007, Front. Neurosci..

[30]  Alexander Borst,et al.  Optic flow processing in the cockpit of the fly , 2007 .

[31]  Alexander Borst,et al.  Integration of Lobula Plate Output Signals by DNOVS1, an Identified Premotor Descending Neuron , 2007, The Journal of Neuroscience.

[32]  A. Borst,et al.  Relating a calcium indicator signal to the unperturbed calcium concentration time-course , 2007, Theoretical Biology and Medical Modelling.

[33]  K. Svoboda,et al.  Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience , 2006, Neuron.

[34]  H. Krapp,et al.  Population coding of self-motion: applying bayesian analysis to a population of visual interneurons in the fly. , 2005, Journal of neurophysiology.

[35]  A. Borst,et al.  Sharing Receptive Fields with Your Neighbors: Tuning the Vertical System Cells to Wide Field Motion , 2005, The Journal of Neuroscience.

[36]  A. Borst,et al.  Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons , 2004, Nature Neuroscience.

[37]  Alexander Borst,et al.  Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons , 1995, Journal of Computational Neuroscience.

[38]  N. J. Strausfeld,et al.  Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg motor neuropil in Calliphora erythrocephala , 1985, Cell and Tissue Research.

[39]  N. J. Strausfeld,et al.  Convergence of visual, haltere, and prosternai inputs at neck motor neurons of Calliphora erythrocephala , 1985, Cell and Tissue Research.

[40]  Isabelle Bülthoff,et al.  Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement , 1984, Journal of Comparative Physiology A.

[41]  Klaus Hausen,et al.  Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[42]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[43]  R. Hengstenberg,et al.  The number and structure of giant vertical cells (VS) in the lobula plate of the blowflyCalliphora erythrocephala , 1982, Journal of comparative physiology.

[44]  K. Hausen,et al.  The synaptic organization of visual interneurons in the lobula complex of flies , 1980, Cell and Tissue Research.

[45]  R. Wolf,et al.  Optomotor-blindH31—aDrosophila mutant of the lobula plate giant neurons , 1978, Journal of comparative physiology.

[46]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[47]  Liqun Luo,et al.  Dendritic development of Drosophila high order visual system neurons is independent of sensory experience , 2003, BMC Neuroscience.

[48]  Karel Svoboda,et al.  ScanImage: Flexible software for operating laser scanning microscopes , 2003, Biomedical engineering online.

[49]  Liqun Luo,et al.  Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila , 2002, The Journal of comparative neurology.

[50]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[51]  A. Borst,et al.  Dendro-Dendritic Interactions between Motion-Sensitive Large-Field Neurons in the Fly , 2002, The Journal of Neuroscience.

[52]  Alexander Borst,et al.  Different mechanisms of calcium entry within different dendritic compartments. , 2002, Journal of neurophysiology.

[53]  Holger G. Krapp,et al.  Neural encoding of behaviourally relevant visual-motion information in the fly , 2002, Trends in Neurosciences.

[54]  A Borst,et al.  Recurrent Network Interactions Underlying Flow-Field Selectivity of Visual Interneurons , 2001, The Journal of Neuroscience.

[55]  H. Krapp,et al.  Early visual experience and the receptive-field organization of optic flow processing interneurons in the fly motion pathway , 2001, Visual Neuroscience.

[56]  A. Borst,et al.  Mechanisms of dendritic calcium signaling in fly neurons. , 2001, Journal of neurophysiology.

[57]  Holger G. Krapp,et al.  Wide-field, motion-sensitive neurons and matched filters for optic flow fields , 2000, Biological Cybernetics.

[58]  Holger G. Krapp,et al.  Arrangement of optical axes and spatial resolution in the compound eye of the female blowfly Calliphora , 2000, Journal of Comparative Physiology A.

[59]  M. Egelhaaf,et al.  Synaptic interactions increase optic flow specificity , 2000, The European journal of neuroscience.

[60]  Alexander Borst,et al.  Local current spread in electrically compact neurons of the fly , 2000, Neuroscience Letters.

[61]  A Borst,et al.  Spatial distribution and characteristics of voltage-gated calcium signals within visual interneurons. , 2000, Journal of neurophysiology.

[62]  A. Borst,et al.  Dendritic integration and its role in computing image velocity. , 1998, Science.

[63]  R Hengstenberg,et al.  Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. , 1998, Journal of neurophysiology.

[64]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[65]  Holger G. Krapp,et al.  A fast stimulus procedure to determine local receptive field properties of motion-sensitive visual interneurons , 1997, Vision Research.

[66]  Alexander Borst,et al.  Amplification of high-frequency synaptic inputs by active dendritic membrane processes , 1996, Nature.

[67]  M Egelhaaf,et al.  Calcium accumulation in visual interneurons of the fly: stimulus dependence and relationship to membrane potential. , 1995, Journal of neurophysiology.

[68]  M Egelhaaf,et al.  In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[69]  N. Strausfeld,et al.  Neuronal basis for parallel visual processing in the fly , 1991, Visual Neuroscience.

[70]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[71]  C. Wehrhahn,et al.  Microsurgical lesion of horizontal cells changes optomotor yaw responses in the blowfly Calliphora erythrocephala , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[72]  Heinrich H. Bülthoff,et al.  Three-Dimensional Reconstruction and Stereoscopic Display of Neurons in the Fly Visual System , 1983 .

[73]  G. Geiger,et al.  Visual orientation behaviour of flies after selective laser beam ablation of interneurones , 1981, Nature.

[74]  R. Hengstenberg Spike responses of ‘non-spiking’ visual interneurone , 1977, Nature.

[75]  W. Penfield,et al.  The Cerebral Cortex of Man: A Clinical Study of Localization of Function , 1968 .