Lattice paths and branched continued fractions II. Multivariate Lah polynomials and Lah symmetric functions
暂无分享,去创建一个
[1] Gilbert Labelle,et al. Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.
[2] Charles N. Delzell,et al. Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra , 2001 .
[3] SeungKyung Park,et al. Inverse descents of r-multipermutations , 1994, Discret. Math..
[4] T. Stieltjes. Recherches sur les fractions continues , 1995 .
[5] Bao-Xuan Zhu,et al. Log-convexity and strong q-log-convexity for some triangular arrays , 2013, Adv. Appl. Math..
[6] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[7] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[8] Luca Ferrari,et al. Production matrices , 2005, Adv. Appl. Math..
[9] Roy Oste,et al. Motzkin Paths, Motzkin Polynomials and Recurrence Relations , 2015, Electron. J. Comb..
[10] Xi Chen,et al. Total positivity of recursive matrices , 2015, 1601.05645.
[11] Yi Wang,et al. Catalan-like numbers and Stieltjes moment sequences , 2015, Discret. Math..
[12] A. Sokal,et al. Lattice Paths and Branched Continued Fractions: An Infinite Sequence of Generalizations of the Stieltjes–Rogers and Thron–Rogers Polynomials, with Coefficientwise Hankel-Total Positivity , 2018, Memoirs of the American Mathematical Society.
[13] Gregory W. Brumfiel,et al. Partially Ordered Rings and Semi-Algebraic Geometry , 1980 .
[14] Jean-Christophe Aval,et al. Multivariate Fuss-Catalan numbers , 2007, Discret. Math..
[15] Shaun M. Fallat,et al. Totally Nonnegative Matrices , 2011 .
[16] Tsit Yuen Lam,et al. An introduction to real algebra , 1984 .
[17] L. Comtet,et al. Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .
[18] Naiomi T. Cameron,et al. Returns and Hills on Generalized Dyck Paths , 2016, J. Integer Seq..
[19] M. Marshall. Positive polynomials and sums of squares , 2008 .
[20] Philippe Flajolet. Combinatorial aspects of continued fractions , 1980, Discret. Math..
[21] Philippe Flajolet,et al. Varieties of Increasing Trees , 1992, CAAP.
[22] Ira M. Gessel,et al. Lagrange inversion , 2016, J. Comb. Theory, Ser. A.
[23] P. Alam. ‘G’ , 2021, Composites Engineering: An A–Z Guide.
[24] Helmut Prodinger. Returns, Hills, and t-ary Trees , 2016, J. Integer Seq..
[25] F. Gantmacher,et al. Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .
[26] Xi Chen,et al. Total positivity of Riordan arrays , 2015, Eur. J. Comb..
[27] T. Stieltjes,et al. Sur la réduction en fraction continue d'une série procédant suivant les puissances descendantes d'une variable , 1889 .
[29] SenungKyung Park,et al. The r-Multipermutations , 1994, J. Comb. Theory, Ser. A.
[30] Martin Aigner,et al. Catalan-like Numbers and Determinants , 1999, J. Comb. Theory, Ser. A.
[31] I. Gessel. A note on Stirling permutations , 2020, 2005.04133.
[32] Allan Pinkus. Totally Positive Matrices , 2009 .
[33] Ira M. Gessel,et al. Stirling Polynomials , 1978, J. Comb. Theory, Ser. A.
[34] Bao-Xuan Zhu,et al. Some positivities in certain triangular arrays , 2014 .
[35] Svante Janson,et al. Generalized Stirling permutations, families of increasing trees and urn models , 2008, J. Comb. Theory, Ser. A.
[36] Emeric Deutsch,et al. Production Matrices and Riordan Arrays , 2007, math/0702638.
[37] Markus Kuba,et al. On Path diagrams and Stirling permutations , 2009, 0906.1672.
[38] F. Gantmakher,et al. Sur les matrices complètement non négatives et oscillatoires , 1937 .
[39] Yi Wang,et al. Notes on the total positivity of Riordan arrays , 2019, Linear Algebra and its Applications.
[40] Matthieu Josuat-Vergès. A q-analog of Schläfli and Gould identities on Stirling numbers , 2016, 1610.02965.