Lattice paths and branched continued fractions II. Multivariate Lah polynomials and Lah symmetric functions

Abstract We introduce the generic Lah polynomials L n , k ( ϕ ) , which enumerate unordered forests of increasing ordered trees with a weight ϕ i for each vertex with i children. We show that, if the weight sequence ϕ is Toeplitz-totally positive, then the triangular array of generic Lah polynomials is totally positive and the sequence of row-generating polynomials L n ( ϕ , y ) is coefficientwise Hankel-totally positive. Upon specialization we obtain results for the Lah symmetric functions and multivariate Lah polynomials of positive and negative type. The multivariate Lah polynomials of positive type are also given by a branched continued fraction. Our proofs use mainly the method of production matrices; the production matrix is obtained by a bijection from ordered forests of increasing ordered trees to labeled partial Łukasiewicz paths. We also give a second proof of the continued fraction using the Euler–Gauss recurrence method.

[1]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[2]  Charles N. Delzell,et al.  Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra , 2001 .

[3]  SeungKyung Park,et al.  Inverse descents of r-multipermutations , 1994, Discret. Math..

[4]  T. Stieltjes Recherches sur les fractions continues , 1995 .

[5]  Bao-Xuan Zhu,et al.  Log-convexity and strong q-log-convexity for some triangular arrays , 2013, Adv. Appl. Math..

[6]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[7]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[8]  Luca Ferrari,et al.  Production matrices , 2005, Adv. Appl. Math..

[9]  Roy Oste,et al.  Motzkin Paths, Motzkin Polynomials and Recurrence Relations , 2015, Electron. J. Comb..

[10]  Xi Chen,et al.  Total positivity of recursive matrices , 2015, 1601.05645.

[11]  Yi Wang,et al.  Catalan-like numbers and Stieltjes moment sequences , 2015, Discret. Math..

[12]  A. Sokal,et al.  Lattice Paths and Branched Continued Fractions: An Infinite Sequence of Generalizations of the Stieltjes–Rogers and Thron–Rogers Polynomials, with Coefficientwise Hankel-Total Positivity , 2018, Memoirs of the American Mathematical Society.

[13]  Gregory W. Brumfiel,et al.  Partially Ordered Rings and Semi-Algebraic Geometry , 1980 .

[14]  Jean-Christophe Aval,et al.  Multivariate Fuss-Catalan numbers , 2007, Discret. Math..

[15]  Shaun M. Fallat,et al.  Totally Nonnegative Matrices , 2011 .

[16]  Tsit Yuen Lam,et al.  An introduction to real algebra , 1984 .

[17]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[18]  Naiomi T. Cameron,et al.  Returns and Hills on Generalized Dyck Paths , 2016, J. Integer Seq..

[19]  M. Marshall Positive polynomials and sums of squares , 2008 .

[20]  Philippe Flajolet Combinatorial aspects of continued fractions , 1980, Discret. Math..

[21]  Philippe Flajolet,et al.  Varieties of Increasing Trees , 1992, CAAP.

[22]  Ira M. Gessel,et al.  Lagrange inversion , 2016, J. Comb. Theory, Ser. A.

[23]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[24]  Helmut Prodinger Returns, Hills, and t-ary Trees , 2016, J. Integer Seq..

[25]  F. Gantmacher,et al.  Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .

[26]  Xi Chen,et al.  Total positivity of Riordan arrays , 2015, Eur. J. Comb..

[27]  T. Stieltjes,et al.  Sur la réduction en fraction continue d'une série procédant suivant les puissances descendantes d'une variable , 1889 .

[29]  SenungKyung Park,et al.  The r-Multipermutations , 1994, J. Comb. Theory, Ser. A.

[30]  Martin Aigner,et al.  Catalan-like Numbers and Determinants , 1999, J. Comb. Theory, Ser. A.

[31]  I. Gessel A note on Stirling permutations , 2020, 2005.04133.

[32]  Allan Pinkus Totally Positive Matrices , 2009 .

[33]  Ira M. Gessel,et al.  Stirling Polynomials , 1978, J. Comb. Theory, Ser. A.

[34]  Bao-Xuan Zhu,et al.  Some positivities in certain triangular arrays , 2014 .

[35]  Svante Janson,et al.  Generalized Stirling permutations, families of increasing trees and urn models , 2008, J. Comb. Theory, Ser. A.

[36]  Emeric Deutsch,et al.  Production Matrices and Riordan Arrays , 2007, math/0702638.

[37]  Markus Kuba,et al.  On Path diagrams and Stirling permutations , 2009, 0906.1672.

[38]  F. Gantmakher,et al.  Sur les matrices complètement non négatives et oscillatoires , 1937 .

[39]  Yi Wang,et al.  Notes on the total positivity of Riordan arrays , 2019, Linear Algebra and its Applications.

[40]  Matthieu Josuat-Vergès A q-analog of Schläfli and Gould identities on Stirling numbers , 2016, 1610.02965.