The Fast Convergence of Incremental PCA
暂无分享,去创建一个
[1] T. P. Krasulina. The method of stochastic approximation for the determination of the least eigenvalue of a symmetrical matrix , 1969 .
[2] Erkki Oja,et al. Subspace methods of pattern recognition , 1983 .
[3] E. Oja,et al. On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix , 1985 .
[4] R. Durrett. Probability: Theory and Examples , 1993 .
[5] Sam T. Roweis,et al. EM Algorithms for PCA and SPCA , 1997, NIPS.
[6] Juyang Weng,et al. Candid Covariance-Free Incremental Principal Component Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[7] Terence Sim,et al. The CMU Pose, Illumination, and Expression Database , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[8] Gilles Blanchard,et al. Statistical properties of Kernel Prinicipal Component Analysis , 2019 .
[9] Gilles Blanchard,et al. On the Convergence of Eigenspaces in Kernel Principal Component Analysis , 2005, NIPS.
[10] Manfred K. Warmuth,et al. Randomized PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension , 2006, NIPS.
[11] Nathan Srebro,et al. Stochastic optimization for PCA and PLS , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[12] Jing Lei,et al. Minimax Rates of Estimation for Sparse PCA in High Dimensions , 2012, AISTATS.
[13] Ohad Shamir,et al. Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization , 2011, ICML.
[14] T. Cai,et al. Sparse PCA: Optimal rates and adaptive estimation , 2012, 1211.1309.
[15] Ioannis Mitliagkas,et al. Memory Limited, Streaming PCA , 2013, NIPS.
[16] Nathan Srebro,et al. Stochastic Optimization of PCA with Capped MSG , 2013, NIPS.
[17] John Langford,et al. A reliable effective terascale linear learning system , 2011, J. Mach. Learn. Res..