Detecting Stock Crashes Using Levy Distribution
暂无分享,去创建一个
Serhiy Semerikov | Andrii Bielinskyi | Viktoria Solovieva | Vladimir N. Soloviev | V. Soloviev | A. Bielinskyi | S. Semerikov | V. Solovieva
[1] E. Fama,et al. Parameter Estimates for Symmetric Stable Distributions , 1971 .
[2] B. Brorsen,et al. Maximum likelihood estimates of sym-metric stable distribution parameters , 1990 .
[3] Ercan E. Kuruoglu,et al. Density parameter estimation of skewed α-stable distributions , 2001, IEEE Trans. Signal Process..
[4] R. Mantegna,et al. Scaling behaviour in the dynamics of an economic index , 1995, Nature.
[5] C. Mallows,et al. A Method for Simulating Stable Random Variables , 1976 .
[6] V. Zolotarev. One-dimensional stable distributions , 1986 .
[7] René Warnant. Théorie des erreurs , 2011 .
[8] W. DuMouchel. On the Asymptotic Normality of the Maximum-Likelihood Estimate when Sampling from a Stable Distribution , 1973 .
[9] Jozef Baruník,et al. Tail Behavior of the Central European Stock Markets during the Financial Crisis , 2010 .
[10] Fernando B. M. Duarte,et al. Dynamics of the Dow Jones and the NASDAQ stock indexes , 2010 .
[11] L. Bachelier,et al. Théorie de la spéculation , 1900 .
[12] I. A. Koutrouvelis. An iterative procedure for the estimation of the parameters of stable laws , 1981 .
[13] V. Plerou,et al. Institutional Investors and Stock Market Volatility , 2005 .
[14] Ioannis A. Koutrouvelis,et al. Regression-Type Estimation of the Parameters of Stable Laws , 1980 .
[15] P. Levy. Théorie des erreurs. La loi de Gauss et les lois exceptionnelles , 1924 .
[16] B. Mandlebrot. The Variation of Certain Speculative Prices , 1963 .
[17] V. Soloviev,et al. Levy’s stable distribution for stock crash detecting , 2019, SHS Web of Conferences.
[18] B. Gnedenko,et al. Limit Distributions for Sums of Independent Random Variables , 1955 .
[19] Amélie Charles,et al. Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013 , 2012 .
[20] V. I. Arnolʹd,et al. Ergodic problems of classical mechanics , 1968 .
[21] E. Fama. The Behavior of Stock-Market Prices , 1965 .
[22] J. Nicolas,et al. Introduction to Second Kind Statistics: Application of Log-Moments and Log-Cumulants to the Analysis of Radar Image Distributions , 2011 .
[23] J. McCulloch,et al. Simple consistent estimators of stable distribution parameters , 1986 .
[24] V. Plerou,et al. Scaling of the distribution of fluctuations of financial market indices. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[25] V. Plerou,et al. A theory of power-law distributions in financial market fluctuations , 2003, Nature.
[26] Boris Podobnik,et al. Asymmetric Lévy flight in financial ratios , 2011, Proceedings of the National Academy of Sciences.
[27] K. Umeno. Ergodic transformations on R preserving Cauchy laws , 2016 .
[28] R. Weron. Levy-stable distributions revisited: tail index > 2 does not exclude the Levy-stable regime , 2001, cond-mat/0103256.
[29] C. L. Nikias,et al. Signal processing with fractional lower order moments: stable processes and their applications , 1993, Proc. IEEE.
[30] Chrysostomos L. Nikias,et al. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics , 1996, IEEE Trans. Signal Process..