Detecting Stock Crashes Using Levy Distribution

In this paper we study the possibility of construction indicators-precursors relying on one of the most power-law tailed distributions – Levy’s stable distribution. Here, we apply Levy’s parameters for 29 stock indices for the period from 1 March 2000 to 28 March 2019 daily values and show their effectiveness as indicators of crisis states on the example of Dow Jones Industrial Average index for the period from 2 January 1920 to 2019. In spite of popularity of the Gaussian distribution in financial modeling, we demonstrated that Levy’s stable distribution is more suitable due to its theoretical reasons and analysis results. And finally, we conclude that stability α and skewness β parameters of Levy’s stable distribution which demonstrate characteristic behavior for crash and critical states, can serve as an indicator-precursors of unstable states.

[1]  E. Fama,et al.  Parameter Estimates for Symmetric Stable Distributions , 1971 .

[2]  B. Brorsen,et al.  Maximum likelihood estimates of sym-metric stable distribution parameters , 1990 .

[3]  Ercan E. Kuruoglu,et al.  Density parameter estimation of skewed α-stable distributions , 2001, IEEE Trans. Signal Process..

[4]  R. Mantegna,et al.  Scaling behaviour in the dynamics of an economic index , 1995, Nature.

[5]  C. Mallows,et al.  A Method for Simulating Stable Random Variables , 1976 .

[6]  V. Zolotarev One-dimensional stable distributions , 1986 .

[7]  René Warnant Théorie des erreurs , 2011 .

[8]  W. DuMouchel On the Asymptotic Normality of the Maximum-Likelihood Estimate when Sampling from a Stable Distribution , 1973 .

[9]  Jozef Baruník,et al.  Tail Behavior of the Central European Stock Markets during the Financial Crisis , 2010 .

[10]  Fernando B. M. Duarte,et al.  Dynamics of the Dow Jones and the NASDAQ stock indexes , 2010 .

[11]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[12]  I. A. Koutrouvelis An iterative procedure for the estimation of the parameters of stable laws , 1981 .

[13]  V. Plerou,et al.  Institutional Investors and Stock Market Volatility , 2005 .

[14]  Ioannis A. Koutrouvelis,et al.  Regression-Type Estimation of the Parameters of Stable Laws , 1980 .

[15]  P. Levy Théorie des erreurs. La loi de Gauss et les lois exceptionnelles , 1924 .

[16]  B. Mandlebrot The Variation of Certain Speculative Prices , 1963 .

[17]  V. Soloviev,et al.  Levy’s stable distribution for stock crash detecting , 2019, SHS Web of Conferences.

[18]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[19]  Amélie Charles,et al.  Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013 , 2012 .

[20]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[21]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[22]  J. Nicolas,et al.  Introduction to Second Kind Statistics: Application of Log-Moments and Log-Cumulants to the Analysis of Radar Image Distributions , 2011 .

[23]  J. McCulloch,et al.  Simple consistent estimators of stable distribution parameters , 1986 .

[24]  V. Plerou,et al.  Scaling of the distribution of fluctuations of financial market indices. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  V. Plerou,et al.  A theory of power-law distributions in financial market fluctuations , 2003, Nature.

[26]  Boris Podobnik,et al.  Asymmetric Lévy flight in financial ratios , 2011, Proceedings of the National Academy of Sciences.

[27]  K. Umeno Ergodic transformations on R preserving Cauchy laws , 2016 .

[28]  R. Weron Levy-stable distributions revisited: tail index > 2 does not exclude the Levy-stable regime , 2001, cond-mat/0103256.

[29]  C. L. Nikias,et al.  Signal processing with fractional lower order moments: stable processes and their applications , 1993, Proc. IEEE.

[30]  Chrysostomos L. Nikias,et al.  Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics , 1996, IEEE Trans. Signal Process..