Role of vector self-interaction in neutron star properties

[1]  Pankaj Kumar,et al.  Effects of an isovector scalar meson on the equation of state of dense matter within a relativistic mean field model , 2022, Physical Review C.

[2]  Pankaj Kumar,et al.  Relativistic mean field model parametrizations in the light of GW170817, GW190814, and PSR J0740+6620 , 2022, Physical Review C.

[3]  A. Mukherjee,et al.  Nearly model-independent constraints on dense matter equation of state in a Bayesian approach , 2022, Physical Review D.

[4]  D. Chatterjee,et al.  Multi-Physics Constraints at Different Densities to Probe Nuclear Symmetry Energy in Hyperonic Neutron Stars , 2022, Frontiers in Astronomy and Space Sciences.

[5]  India.,et al.  General relativistic treatment of f -mode oscillations of hyperonic stars , 2022, Physical Review C.

[6]  D. Chatterjee,et al.  Imposing multi-physics constraints at different densities on the neutron Star Equation of State , 2021, The European Physical Journal A.

[7]  I. Cognard,et al.  The Radius of PSR J0740+6620 from NICER and XMM-Newton Data , 2021, The Astrophysical Journal Letters.

[8]  B. Biswas Impact of PREX-II and Combined Radio/NICER/XMM-Newton’s Mass–radius Measurement of PSR J0740+6620 on the Dense-matter Equation of State , 2021, The Astrophysical Journal.

[9]  C. Horowitz,et al.  Implications of PREX-2 on the Equation of State of Neutron-Rich Matter. , 2021, Physical review letters.

[10]  T. E. Riley,et al.  A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy , 2021, The Astrophysical Journal Letters.

[11]  D. Chatterjee,et al.  Effect of hyperons on f -mode oscillations in neutron stars , 2020, 2011.02204.

[12]  C. Tsang,et al.  Impact of the neutron-star deformability on equation of state parameters , 2020, 2009.05239.

[13]  C. Providência,et al.  Unveiling the correlations of tidal deformability with the nuclear symmetry energy parameters , 2020, 2008.03469.

[14]  I. Vidaña Short introduction to the physics of neutron stars , 2020, EPJ Web of Conferences.

[15]  D. Holz,et al.  Direct astrophysical tests of chiral effective field theory at supranuclear densities , 2020, 2004.07744.

[16]  K. Nakazato,et al.  Effects of symmetry energy on the radius and tidal deformability of neutron stars in the relativistic mean-field model , 2020, 2002.00562.

[17]  E. Khan,et al.  Multimessenger and multiphysics Bayesian inference for the GW170817 binary neutron star merger , 2020, 2001.10259.

[18]  G. Lalazissis,et al.  Relativistic Hartree Bogoliubov model with Density Dependent meson-nucleon couplings , 2020, HNPS Proceedings.

[19]  W. Ho,et al.  PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter , 2019, The Astrophysical Journal.

[20]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[21]  Nai-Bo Zhang,et al.  Key factor for determining relation between radius and tidal deformability of neutron stars: Slope of symmetry energy , 2019, 1909.02274.

[22]  Nai-Bo Zhang,et al.  Implications of the Mass M⊙ of PSR J0740+6620 on the Equation of State of Super-dense Neutron-rich Nuclear Matter , 2019, The Astrophysical Journal.

[23]  K. Allegaert,et al.  (Preprint) , 2018 .

[24]  J. Schaffner-Bielich,et al.  Relativistic parameterizations of neutron matter and implications for neutron stars , 2018, Physical Review C.

[25]  B. Kumar,et al.  GW170817: Constraining the nuclear matter equation of state from the neutron star tidal deformability , 2018, Physical Review C.

[26]  N. V. Keerthana,et al.  Properties of the Binary Neutron Star Merger GW170817 , 2018, 1805.11579.

[27]  Brien,et al.  GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.

[28]  Luciano Rezzolla,et al.  New Constraints on Radii and Tidal Deformabilities of Neutron Stars from GW170817. , 2018, Physical review letters.

[29]  C. Horowitz,et al.  Neutron Skins and Neutron Stars in the Multimessenger Era. , 2017, Physical review letters.

[30]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[31]  Kinjal Banerjee,et al.  Nuclear symmetry energy with mesonic cross-couplings in the effective chiral model , 2017, 1708.07291.

[32]  M. Oertel,et al.  Equations of state for supernovae and compact stars , 2016, 1610.03361.

[33]  A. Schwenk,et al.  Neutron matter from chiral two- and three-nucleon calculations up to N$^3$LO , 2016, 1608.05615.

[34]  J. Berger,et al.  Gogny force with a finite-range density dependence , 2015 .

[35]  Wei-Chia Chen,et al.  Building relativistic mean field models for finite nuclei and neutron stars , 2014, 1408.4159.

[36]  R. Sellahewa,et al.  Isovector properties of the Gogny interaction , 2014, 1407.8138.

[37]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[38]  Bao-An Li,et al.  Constraining the high-density behavior of the nuclear symmetry energy with the tidal polarizability of neutron stars , 2012, 1210.3402.

[39]  F. Camera,et al.  Constraints on the symmetry energy and neutron skins from experiments and theory , 2012, 1204.0466.

[40]  Chang Xu,et al.  Single-nucleon potential decomposition of the nuclear symmetry energy , 2011, 1112.2936.

[41]  C. Horowitz,et al.  Equation of state of dense matter from a density dependent relativistic mean field model , 2010, 1004.0228.

[42]  J. Schaffner-Bielich,et al.  A statistical model for a complete supernova equation of state , 2009, 0911.4073.

[43]  Raj Kumar,et al.  Nonrotating and rotating neutron stars in the extended field theoretical model , 2007, 0709.4081.

[44]  T. Hinderer,et al.  Constraining neutron-star tidal Love numbers with gravitational-wave detectors , 2007, 0709.1915.

[45]  Milano,et al.  Spin–orbit splitting and the tensor component of the Skyrme interaction , 2007, nucl-th/0701015.

[46]  J. Stone,et al.  The Skyrme interaction in finite nuclei and nuclear matter , 2006, nucl-th/0607002.

[47]  U. Meißner,et al.  Jülich hyperon-nucleon model revisited , 2005, nucl-th/0506019.

[48]  D. Vretenar,et al.  Relativistic Hartree-Bogoliubov model with density-dependent meson-nucleon couplings , 2002, nucl-th/0205009.

[49]  C. Horowitz,et al.  The neutron radii of Lead and neutron stars , 2001, nucl-th/0108036.

[50]  I. Bednarek,et al.  Nucleon and meson effective masses in the relativistic mean field theory , 2000, nucl-th/0011084.

[51]  J. Lattimer,et al.  Neutron Star Structure and the Equation of State , 2000, astro-ph/0002232.

[52]  Y. Yamamoto,et al.  Soft core hyperon - nucleon potentials , 1998, nucl-th/9807082.

[53]  V. Pandharipande,et al.  Equation of state of nucleon matter and neutron star structure , 1998, nucl-th/9804027.

[54]  R. Schaeffer,et al.  A Skyrme parametrization from subnuclear to neutron star densities , 1997 .

[55]  J. Walecka,et al.  Recent progress in quantum hadrodynamics , 1997, nucl-th/9701058.

[56]  N. Glendenning Compact Stars: Nuclear Physics, Particle Physics, and General Relativity , 1996 .

[57]  B. D. Serot,et al.  Relativistic mean-field theory and the high-density nuclear equation of state , 1996, nucl-th/9603037.

[58]  J. Berger,et al.  Constrained hartree-fock and beyond , 1989 .

[59]  R. Machleidt,et al.  The Bonn Meson Exchange Model for the Nucleon Nucleon Interaction , 1987 .

[60]  J. Dechargé,et al.  Hartree-Fock-Bogolyubov calculations with the D 1 effective interaction on spherical nuclei , 1980 .

[61]  D. Brink,et al.  Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei , 1972 .

[62]  D. Brink,et al.  Hartree-Fock calculations with Skyrme's interaction , 1970 .

[63]  T. Skyrme CVII. The nuclear surface , 1956 .

[64]  P. Ring,et al.  Density dependent relativistic mean field theory in deformed nuclei , 1998 .

[65]  T. Skyrme The effective nuclear potential , 1958 .

[66]  Philosophical Magazine , 1945, Nature.