Temperature-dependent folding allows stable dimerization of secretory and virus-associated E proteins of Dengue and Zika viruses in mammalian cells

[1]  O. Burrone,et al.  Role of N-glycosylation on Zika virus E protein secretion, viral assembly and infectivity. , 2017, Biochemical and biophysical research communications.

[2]  R. Baric,et al.  Neutralization mechanism of a highly potent antibody against Zika virus , 2016, Nature Communications.

[3]  J. Low,et al.  Cross-reactive antibodies enhance live attenuated virus infection for increased immunogenicity , 2016, Nature Microbiology.

[4]  T. Pierson,et al.  Zika Virus Is Not Uniquely Stable at Physiological Temperatures Compared to Other Flaviviruses , 2016, mBio.

[5]  M. Beltramello,et al.  Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection , 2016, Science.

[6]  C. Nelson,et al.  Structural Basis of Zika Virus-Specific Antibody Protection , 2016, Cell.

[7]  J. Mascola,et al.  Broadly Neutralizing Activity of Zika Virus-Immune Sera Identifies a Single Viral Serotype. , 2016, Cell reports.

[8]  Anavaj Sakuntabhai,et al.  Structural basis of potent Zika–dengue virus antibody cross-neutralization , 2016, Nature.

[9]  R. Baric,et al.  Dengue Virus Envelope Dimer Epitope Monoclonal Antibodies Isolated from Dengue Patients Are Protective against Zika Virus , 2016, mBio.

[10]  J. Wrammert,et al.  Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus , 2016, Proceedings of the National Academy of Sciences.

[11]  G. Screaton,et al.  Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus , 2016, Nature Immunology.

[12]  S. Rasmussen,et al.  Zika Virus and Birth Defects--Reviewing the Evidence for Causality. , 2016, The New England journal of medicine.

[13]  G. Screaton,et al.  New insights into the immunopathology and control of dengue virus infection , 2015, Nature Reviews Immunology.

[14]  J. Lai,et al.  Comprehensive mapping of functional epitopes on dengue virus glycoprotein E DIII for binding to broadly neutralizing antibodies 4E11 and 4E5A by phage display. , 2015, Virology.

[15]  O. Burrone,et al.  Secretion of dengue virus envelope protein ectodomain from mammalian cells is dependent on domain II serotype and affects the immune response upon DNA vaccination. , 2015, The Journal of general virology.

[16]  E. Harris,et al.  Cryo-EM structure of an antibody that neutralizes dengue virus type 2 by locking E protein dimers , 2015, Science.

[17]  E. Ooi,et al.  Dengue E Protein Domain III-Based DNA Immunisation Induces Strong Antibody Responses to All Four Viral Serotypes , 2015, PLoS neglected tropical diseases.

[18]  Jacky Flipse,et al.  The Complexity of a Dengue Vaccine: A Review of the Human Antibody Response , 2015, PLoS neglected tropical diseases.

[19]  V. Kostyuchenko,et al.  A highly potent human antibody neutralizes dengue virus serotype 3 by binding across three surface proteins , 2015, Nature Communications.

[20]  Cameron P Simmons,et al.  A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus , 2014, Nature Immunology.

[21]  P. Desprès,et al.  Recognition determinants of broadly neutralizing human antibodies against dengue viruses , 2015, Nature.

[22]  Bhumi P. Patel,et al.  Dengue Viruses Are Enhanced by Distinct Populations of Serotype Cross-Reactive Antibodies in Human Immune Sera , 2014, PLoS pathogens.

[23]  Steven F. Baker,et al.  Influenza A and B Virus Intertypic Reassortment through Compatible Viral Packaging Signals , 2014, Journal of Virology.

[24]  V. Nerurkar,et al.  Characterization of the Ectodomain of the Envelope Protein of Dengue Virus Type 4: Expression, Membrane Association, Secretion and Particle Formation in the Absence of Precursor Membrane Protein , 2014, PloS one.

[25]  E. Harris,et al.  A potent anti-dengue human antibody preferentially recognizes the conformation of E protein monomers assembled on the virus surface , 2014, EMBO molecular medicine.

[26]  Victor A. Kostyuchenko,et al.  Immature and Mature Dengue Serotype 1 Virus Structures Provide Insight into the Maturation Process , 2013, Journal of Virology.

[27]  Jiaqi Wang,et al.  Structural Changes in Dengue Virus When Exposed to a Temperature of 37°C , 2013, Journal of Virology.

[28]  Luke N Robinson,et al.  Redesign of a cross-reactive antibody to dengue virus with broad-spectrum activity and increased in vivo potency , 2013, Proceedings of the National Academy of Sciences.

[29]  Richard J Kuhn,et al.  Dengue structure differs at the temperatures of its human and mosquito hosts , 2013, Proceedings of the National Academy of Sciences.

[30]  John S. Brownstein,et al.  The global distribution and burden of dengue , 2013, Nature.

[31]  James E. Robinson,et al.  Mechanistic Study of Broadly Neutralizing Human Monoclonal Antibodies against Dengue Virus That Target the Fusion Loop , 2012, Journal of Virology.

[32]  M. Diamond,et al.  Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions , 2012, Proceedings of the National Academy of Sciences.

[33]  Cameron P. Simmons,et al.  Current concepts: Dengue , 2012 .

[34]  C. Huang,et al.  Amino acid changes within the E protein hinge region that affect dengue virus type 2 infectivity and fusion. , 2011, Virology.

[35]  M. Guzmán,et al.  The Complexity of Antibody-Dependent Enhancement of Dengue Virus Infection , 2010, Viruses.

[36]  M. Kielian,et al.  In Vitro and In Vivo Studies Identify Important Features of Dengue Virus pr-E Protein Interactions , 2010, PLoS pathogens.

[37]  Prida Malasit,et al.  Cross-Reacting Antibodies Enhance Dengue Virus Infection in Humans , 2010, Science.

[38]  M. Accavitti-Loper,et al.  Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody. , 2009, Virology.

[39]  D. Beckett,et al.  A minimal peptide substrate in biotin holoenzyme synthetase‐catalyzed biotinylation , 2008, Protein science : a publication of the Protein Society.

[40]  T. Pierson,et al.  Temperature-dependent production of pseudoinfectious dengue reporter virus particles by complementation. , 2008, Virology.

[41]  Richard J Kuhn,et al.  Structural proteomics of dengue virus. , 2008, Current opinion in microbiology.

[42]  A. López-Requena,et al.  In vivo site-specific biotinylation of proteins within the secretory pathway using a single vector system , 2008, BMC biotechnology.

[43]  Ying Zhang,et al.  The Flavivirus Precursor Membrane-Envelope Protein Complex: Structure and Maturation , 2008, Science.

[44]  Wei Zhang,et al.  Structure of the Immature Dengue Virus at Low pH Primes Proteolytic Maturation , 2008, Science.

[45]  Gregory D. Gromowski,et al.  Characterization of an antigenic site that contains a dominant, type-specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus. , 2007, Virology.

[46]  R. Doms,et al.  A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection. , 2006, Virology.

[47]  R. Doms,et al.  N-Linked Glycosylation of West Nile Virus Envelope Proteins Influences Particle Assembly and Infectivity , 2005, Journal of Virology.

[48]  Y. Modis,et al.  Variable Surface Epitopes in the Crystal Structure of Dengue Virus Type 3 Envelope Glycoprotein , 2005, Journal of Virology.

[49]  W. Weissenhorn,et al.  Class I and class II viral fusion protein structures reveal similar principles in membrane fusion (Review) , 2004, Molecular membrane biology.

[50]  Timothy S Baker,et al.  Conformational changes of the flavivirus E glycoprotein. , 2004, Structure.

[51]  K. Stiasny,et al.  Structure of a flavivirus envelope glycoprotein in its low‐pH‐induced membrane fusion conformation , 2004, The EMBO journal.

[52]  Y. Modis,et al.  Structure of the dengue virus envelope protein after membrane fusion , 2004, Nature.

[53]  Daniele Sblattero,et al.  Binders based on dimerised immunoglobulin VH domains. , 2003, Journal of molecular biology.

[54]  Ying Zhang,et al.  Structures of immature flavivirus particles , 2003, The EMBO journal.

[55]  A. Helenius,et al.  Folding and Dimerization of Tick-Borne Encephalitis Virus Envelope Proteins prM and E in the Endoplasmic Reticulum , 2002, Journal of Virology.

[56]  Wei Zhang,et al.  Structure of Dengue Virus Implications for Flavivirus Organization, Maturation, and Fusion , 2002, Cell.

[57]  J. Roehrig,et al.  Monoclonal Antibodies That Bind to Domain III of Dengue Virus E Glycoprotein Are the Most Efficient Blockers of Virus Adsorption to Vero Cells , 2001, Journal of Virology.

[58]  C. Mandl,et al.  Mutational Evidence for an Internal Fusion Peptide in Flavivirus Envelope Protein E , 2001, Journal of Virology.

[59]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[60]  O. Burrone,et al.  Mammalian cell expression of dimeric small immune proteins (SIP). , 1997, Protein engineering.

[61]  S. Harrison,et al.  The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution , 1995, Nature.

[62]  R. Randall,et al.  Construction of solid matrix-antibody-antigen complexes containing simian immunodeficiency virus p27 using tag-specific monoclonal antibody and tag-linked antigen. , 1992, The Journal of general virology.

[63]  M. K. Gentry,et al.  Dengue virus-specific and flavivirus group determinants identified with monoclonal antibodies by indirect immunofluorescence. , 1982, The American journal of tropical medicine and hygiene.

[64]  L. R. Petersen,et al.  Zika Virus. , 2016, The New England journal of medicine.

[65]  J.,et al.  The New England Journal of Medicine , 2012 .

[66]  M. Rossmann,et al.  A structural perspective of the flavivirus life cycle , 2005, Nature Reviews Microbiology.