ON HERMITIAN AND SKEW-HERMITIAN SPLITTING ITERATION METHODS FOR CONTINUOUS SYLVESTER EQUATIONS *

We present a Hermitian and skew-Hermitian splitting (HSS) iteration method for solving large sparse continuous Sylvester equations with non-Hermitian and positive definite/semidefinite matrices. The unconditional convergence of the HSS iteration method is proved and an upper bound on the convergence rate is derived. Moreover, to reduce the computing cost, we establish an inexact variant of the HSS iteration method and analyze its convergence property in detail. Numerical results show that the HSS iteration method and its inexact variant are efficient and robust solvers for this class of continuous Sylvester equations.

[1]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[2]  R. A. Smith Matrix Equation $XA + BX = C$ , 1968 .

[3]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[4]  P. Lancaster Explicit Solutions of Linear Matrix Equations , 1970 .

[5]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[6]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[7]  Gene H. Golub,et al.  Matrix computations , 1983 .

[8]  F. R. Gantmakher The Theory of Matrices , 1984 .

[9]  Dennis S. Bernstein,et al.  The Optimal Projection Equations for Reduced-Order State Estimation , 1985, 1985 American Control Conference.

[10]  Brian D. O. Anderson,et al.  Stability and the matrix Lyapunov equation for discrete 2-dimensional systems , 1986 .

[11]  Solution of the matrix equation AX−XB=C , 1986 .

[12]  Dennis S. Bernstein,et al.  The optimal projection equations for reduced-order, discrete-time state estimation for linear systems with multiplicative white noise , 1987 .

[13]  I. Petersen Disturbance attenuation and H^{∞} optimization: A design method based on the algebraic Riccati equation , 1987 .

[14]  E. Wachspress Iterative solution of the Lyapunov matrix equation , 1988 .

[15]  L. Jódar An algorithm for solving generalized algebraic Lyapunov equations in Hilbert space, applications to boundary value problems , 1988 .

[16]  M. Ilic,et al.  New approaches to voltage monitoring and control , 1989, IEEE Control Systems Magazine.

[17]  Yoram Halevi,et al.  The optimal reduced-order estimator for systems with singular measurement noise , 1989 .

[18]  Daniel J. Inman,et al.  Vibration: With Control, Measurement, and Stability , 1989 .

[19]  Basil G. Mertzios,et al.  Analysis of bilinear systems using Walsh functions , 1990 .

[20]  W. Niethammer,et al.  SOR for AX−XB=C , 1991 .

[21]  L. Reichel,et al.  Krylov-subspace methods for the Sylvester equation , 1992 .

[22]  L. Reichel,et al.  A generalized ADI iterative method , 1993 .

[23]  David J. Evans,et al.  A Parallel Additive Preconditioner for Conjugate Gradient Method for AX + XB = C , 1994, Parallel Comput..

[24]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[25]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[26]  Lothar Reichel,et al.  Application of ADI Iterative Methods to the Restoration of Noisy Images , 1996, SIAM J. Matrix Anal. Appl..

[27]  A. Schaft L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .

[28]  Guiping Xu,et al.  ON SOLUTIONS OF MATRIX EQUATION AXB + CYD = F , 1998 .

[29]  Daniel Kressner,et al.  CTLEX - a Collection of Benchmark Examples for Continuous-Time Lyapunov Equations , 1999 .

[30]  Alan J. Laub,et al.  On the Iterative Solution of a Class of Nonsymmetric Algebraic Riccati Equations , 2000, SIAM J. Matrix Anal. Appl..

[31]  Chun-Hua Guo,et al.  Nonsymmetric Algebraic Riccati Equations and Wiener-Hopf Factorization for M-Matrices , 2001, SIAM J. Matrix Anal. Appl..

[32]  Michael K. Ng,et al.  Preconditioners for nonsymmetric block toeplitz-like-plus-diagonal linear systems , 2003, Numerische Mathematik.

[33]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[34]  Zhong-Zhi Bai,et al.  A class of two‐stage iterative methods for systems of weakly nonlinear equations , 1997, Numerical Algorithms.

[35]  Owe Axelsson,et al.  A Class of Nested Iteration Schemes for Linear Systems with a Coefficient Matrix with a Dominant Positive Definite Symmetric Part , 2004, Numerical Algorithms.

[36]  Yuan Lei,et al.  Best Approximate Solution of Matrix Equation AXB+CYD=E , 2005, SIAM J. Matrix Anal. Appl..

[37]  Zhong-zhiBai,et al.  ON THE MINIMAL NONNEGATIVE SOLUTION OFNONSYMMETRIC ALGEBRAIC RICCATI EQUATION , 2005 .

[38]  Zhong-Zhi Bai,et al.  Alternately linearized implicit iteration methods for the minimal nonnegative solutions of the nonsymmetric algebraic Riccati equations , 2006, Numer. Linear Algebra Appl..

[39]  D. Inman Vibration control , 2018, Advanced Applications in Acoustics, Noise and Vibration.

[40]  Zhong-Zhi Bai,et al.  Splitting iteration methods for non-Hermitian positive definite systems of linear equations , 2007 .

[41]  Gene H. Golub,et al.  Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices , 2007, Math. Comput..

[42]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[43]  Michael K. Ng,et al.  On Preconditioned Iterative Methods for Burgers Equations , 2007, SIAM J. Sci. Comput..

[44]  Chuanqing Gu,et al.  A shift-splitting hierarchical identification method for solving Lyapunov matrix equations , 2009 .