Structure and relaxation processes of an anisotropic molecular fluid confined into 1D nanochannels

Structural order parameters of a smectic liquid crystal confined into the columnar form of porous silicon are studied using neutron scattering and optical spectroscopic techniques. It is shown that both the translational and orientational anisotropic properties of the confined phase strongly couple to the one-dimensional character of the porous silicon matrix. The influence of this confinement induced anisotropic local structure on the molecular reorientations occurring in the picosecond timescale is discussed.

[1]  D. Morineau,et al.  Evidence of anisotropic quenched disorder effects on a smectic liquid crystal confined in porous silicon. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  H. Cang,et al.  Dynamical signature of two ''ideal glass transitions'' in nematic liquid crystals , 2003 .

[3]  D. Morineau,et al.  Confinement of molecular liquids: Consequences on thermodynamic, static and dynamical properties of benzene and toluene , 2003, The European physical journal. E, Soft matter.

[4]  J. Li,et al.  Dynamics in supercooled liquids and in the isotropic phase of liquid crystals: A comparison , 2003 .

[5]  A. Bulou,et al.  Oxidised and non oxidised porous silicon/disperse red 1composite: physical and optical properties , 2003 .

[6]  K. Gubbins,et al.  Global phase diagrams for freezing in porous media , 2002 .

[7]  N. Clark,et al.  Universality and Scaling in the Disordering of a Smectic Liquid Crystal , 2001, Science.

[8]  H. Christenson Confinement effects on freezing and melting , 2001 .

[9]  R. Stengl,et al.  On the morphology and the electrochemical formation mechanism of mesoporous silicon , 2000 .

[10]  F. Aliev,et al.  Dielectric spectroscopy of liquid crystals in smectic, nematic, and isotropic phases confined in random porous media , 1998 .

[11]  R. Birgeneau,et al.  Crossover to tricritical behavior at the nematic to smecticA transition: An x-ray scattering study , 1986 .

[12]  M. Biot THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID , 1955 .

[13]  R. Birgeneau,et al.  Effect of a quenched random field on a continuous symmetry breaking transition: nematic to smectic-A transition in octyloxycyanobiphenyl-aerosil dispersions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .