Numerical simulation of inductively coupled plasma flows under chemical non‐equilibrium

This paper presents a detailed review of the numerical modeling of inductively coupled air plasmas under local thermodynamic equilibrium and under chemical non‐equilibrium. First, the physico‐chemical models are described, i.e. the thermodynamics, transport phenomena and chemical kinetics models. Particular attention is given to the correct modelling of ambipolar diffusion in multi‐component chemical non‐equilibrium plasmas. Then, the numerical aspects are discussed, i.e. the space discretization and iterative solution strategies. Finally, computed results are presented for the flow, temperature and chemical concentration fields in an air inductively coupled plasma torch. Calculations are performed assuming local thermodynamic equilibrium and under chemical non‐equilibrium, where two different finite‐rate chemistry models are used. Besides important non‐equilibrium effects, we observe significant demixing of oxygen and nitrogen nuclei, which occurs due to diffusion regardless of the degree of non‐equilibrium in the plasma.

[1]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[2]  A. F. Kolesnikov,et al.  Combined Measurements and Computations of High Enthalpy and Plasma Flows for Determination of TPM Surface Catalycity , 2000 .

[3]  J. Yos,et al.  TRANSPORT PROPERTIES OF NITROGEN, HYDROGEN, OXYGEN, AND AIR TO 30,000 K , 1963 .

[4]  A. V. Donskoi,et al.  Physics and Technology of Low-Temperature Plasmas , 1977 .

[5]  M. Mékidèche Contribution à la modélisation numérique de torches à plasma d'induction , 1993 .

[6]  A. Murphy Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas , 1995 .

[7]  P. Gnoffo,et al.  Multi-Component Diffusion With Application to Computational Aerothermodynamics , 1998 .

[8]  Uwe Riedel,et al.  Transport Coefficients of Reacting Air at High Temperatures , 2000 .

[9]  J. Mostaghimi,et al.  A two‐temperature model of the inductively coupled rf plasma , 1987 .

[10]  Peter A. Gnoffo,et al.  Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium , 1989 .

[11]  A multi-domain boundary-relaxation technique for the calculation of the electromagnetic field in ferrite-core inductive plasmas , 2002 .

[12]  Gérard Degrez,et al.  Efficient Computational Model for Inductive Plasma Flows , 2000 .

[13]  M. Hafez,et al.  Computational fluid dynamics review 1995 , 1995 .

[14]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[15]  C. Hirsch Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows , 1990 .

[16]  Mario Carbonaro,et al.  Thermodynamic and Transport Properties for Inductive Plasma Modeling , 1999 .

[17]  R. S. Devoto Simplified Expressions for the Transport Properties of Ionized Monatomic Gases , 1967 .

[18]  Olivier Chazot,et al.  The VKI Plasmatron Characteristics and Performance , 2000 .

[19]  Study of Quartz Surface Catalycity in Dissociated Carbon Dioxide Subsonic Flows , 2000 .

[20]  Richard A. Thompson,et al.  A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K , 1989 .

[21]  A. B. Cambel,et al.  Partition Functions and Thermodynamic Properties of Nitrogen and Oxygen Plasmas , 1965 .

[22]  P. Rini,et al.  Elemental demixing in inductively coupled air plasma torches at high pressures , 2004 .

[23]  V. Semin Theory of nonequilibrium inductive high-frequency discharge in a gas flow , 1991 .

[24]  A. Kolesnikov,et al.  Mathematical Models for Plasma and Gas Flows in Induction Plasmatrons , 1996 .

[25]  R. Brokaw,et al.  Thermal Conductivity of Gas Mixtures in Chemical Equilibrium , 1957 .

[26]  Erwin Frederick Jaeger,et al.  Power deposition in high-density inductively coupled plasma tools for semiconductor processing , 1995 .

[27]  C. Alcock,et al.  Thermodynamic Properties of Individual Substances , 1994 .