Cosmological measurements from angular power spectra analysis of BOSS DR12 tomography

We constrain cosmological parameters by analysing the angular power spectra of the Baryon Oscillation Spectroscopic Survey DR12 galaxies, a spectroscopic follow-up of around 1.3 million SDSS galaxies over 9376 deg^2 with an effective volume of ∼6.5 (Gpc h^−1)^3 in the redshift range 0.15 ≤ |$z$| < 0.80. We split this sample into 13 tomographic bins (Δ|$z$| = 0.05); angular power spectra were calculated using a Pseudo-C_l estimator, and covariance matrices were estimated using lognormal simulated maps. Cosmological constraints obtained from these data were combined with constraints from Planck cosmic microwave background experiment as well as the JLA supernovae compilation. Considering a |$w$|CDM cosmological model measured on scales up to k_max = 0.07h Mpc^−1, we constrain a constant dark energy equation-of-state with an |${\sim } 4{{\ \rm per\ cent}}$| error at the 1σ level: |$w_0 = -0.993^{+0.046}_{-0.043}$|⁠, together with Ω_m = 0.330 ± 0.012, Ω_b = 0.0505 ± 0.002, |$S_8 \equiv \sigma _8 \sqrt{\Omega _\mathrm{ m}/0.3} = 0.863 \pm 0.016$|⁠, and h = 0.661 ± 0.012. For the same combination of data sets, but now considering a ΛCDM (lambda cold dark matter) model with massive neutrinos and the same scale cut, we find Ω_m = 0.328 ± 0.009, |$\Omega _\mathrm{ b} = 0.05017^{+0.0009}_{-0.0008}$|⁠, S_8 = 0.862 ± 0.017, and |$h = 0.663^{+0.006}_{-0.007}$|⁠, and a 95 per cent credible interval (CI) upper limit of ∑m_ν < 0.14 eV for a normal hierarchy. These results are competitive if not better than standard analyses with the same data set, and demonstrate that this should be a method of choice for future surveys, opening the door for their full exploitation in cross-correlation probes.

[1]  Spherical harmonic analysis of IRAS galaxies: implications for the Great Attractor and Cold Dark Matter , 1992 .

[2]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.

[3]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[4]  A. B. McDonald Nobel Lecture: The Sudbury Neutrino Observatory: Observation of flavor change for solar neutrinos , 2016 .

[5]  The angular power spectrum of NVSS radio galaxies , 2004, astro-ph/0404085.

[6]  W. Percival,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in configuration space , 2016, 1607.03154.

[7]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[8]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): colour- and luminosity-dependent clustering from calibrated photometric redshifts , 2012, 1206.0943.

[9]  J. Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:a large sample of mock galaxy catalogues , 2012, 1203.6609.

[10]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[11]  Peter Melchior,et al.  Dos and don'ts of reduced chi-squared , 2010, 1012.3754.

[12]  D. J. Fixsen,et al.  The Cosmic Microwave Background spectrum from the full COBE FIRAS data set , 1996 .

[13]  David N. Spergel,et al.  First measurement of the cross-correlation of CMB lensing and galaxy lensing , 2013, 1311.6200.

[14]  Robert C. Nichol,et al.  The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data , 2006, astro-ph/0605302.

[15]  David Schlegel,et al.  The DESI Experiment, a whitepaper for Snowmass 2013 , 2013, 1308.0847.

[16]  W. Percival,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: on the measurement of growth rate using galaxy correlation functions , 2016, 1607.03148.

[17]  T. Kajita Nobel Lecture: Discovery of atmospheric neutrino oscillations , 2016 .

[18]  O. Lahav,et al.  Cosmological baryonic and matter densities from 600 000 SDSS luminous red galaxies with photometric redshifts , 2006, astro-ph/0605303.

[19]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[20]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[21]  J. Lesgourgues,et al.  Neutrino cosmology and Planck , 2014, 1404.1740.

[22]  R. Nichol,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Fourier space , 2016, 1607.03149.

[23]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[24]  André A. Costa,et al.  J-PAS: The Javalambre-Physics of the Accelerated Universe Astrophysical Survey , 2014, 1403.5237.

[25]  Can cosmology detect hierarchical neutrino masses , 2002, astro-ph/0211106.

[26]  Ashley J. Ross,et al.  CLUSTERING OF SLOAN DIGITAL SKY SURVEY III PHOTOMETRIC LUMINOUS GALAXIES: THE MEASUREMENT, SYSTEMATICS, AND COSMOLOGICAL IMPLICATIONS , 2012, 1201.2137.

[27]  F. Castander,et al.  Cross-correlation of spectroscopic and photometric galaxy surveys: cosmology from lensing and redshift distortions , 2011, 1109.4852.

[28]  T. Schwetz,et al.  Cosmology and the neutrino mass ordering , 2016, 1606.04691.

[29]  Ofer Lahav,et al.  Cross-correlation of 2MASS and WMAP 3: implications for the integrated Sachs–Wolfe effect , 2007 .

[30]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[31]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[32]  J. Schmee An Introduction to Multivariate Statistical Analysis , 1986 .

[33]  J. Lesgourgues,et al.  Massive neutrinos and cosmology , 2005, astro-ph/0603494.

[34]  H. T. Johansson,et al.  Fast and Accurate Evaluation of Wigner 3j, 6j, and 9j Symbols Using Prime Factorization and Multiword Integer Arithmetic , 2015, SIAM J. Sci. Comput..

[35]  Y. Jing,et al.  An analytical model for the non-linear redshift-space power spectrum , 2002, astro-ph/0201124.

[36]  H. Peiris,et al.  Unbiased pseudo-Cl power spectrum estimation with mode projection , 2016, 1609.03577.

[37]  Ashley J. Ross,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Constraining modified gravity , 2016, 1612.00812.

[38]  Daniel Thomas,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in Fourier space , 2016, 1607.03153.

[39]  Boris Leistedt,et al.  Estimating the large-scale angular power spectrum in the presence of systematics: a case study of Sloan Digital Sky Survey quasars , 2013, 1306.0005.

[40]  Ofer Lahav,et al.  Excess clustering on large scales in the MegaZ DR7 photometric redshift survey. , 2011, Physical review letters.

[41]  Scot S. Olivier,et al.  Large Synoptic Survey Telescope: Dark Energy Science Collaboration , 2012 .

[42]  S. Nissanke,et al.  Prospects for Resolving the Hubble Constant Tension with Standard Sirens. , 2018, Physical review letters.

[43]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[44]  J. E. Ruhl,et al.  COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERS IN THE 2500 SQUARE-DEGREE SPT-SZ SURVEY , 2016, 1603.06522.

[45]  E. Branchini,et al.  Extracting cosmological information from the angular power spectrum of the 2MASS Photometric Redshift catalogue , 2017, 1711.04583.

[46]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[47]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[48]  J. Lesgourgues,et al.  Neutrino Cosmology by Julien Lesgourgues , 2013 .

[49]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[50]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[51]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[52]  A. Taylor,et al.  Cosmic microwave background temperature and polarization pseudo-Cl estimators and covariances , 2004, astro-ph/0410394.

[53]  A. Amara,et al.  Integrated cosmological probes: Extended analysis , 2016, 1612.03121.

[54]  Ofer Lahav,et al.  A spherical harmonic approach to redshift distortion and a measurement of $\Omega_0$ from the 1.2-Jy IRAS Redshift Survey , 1994 .

[55]  J. Lesgourgues,et al.  The CLASSgal code for relativistic cosmological large scale structure , 2013, 1307.1459.

[56]  Stefano Casertano,et al.  Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant , 2018, The Astrophysical Journal.

[57]  S. Bridle,et al.  Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune? , 2014, 1408.4742.

[58]  W. Percival,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: mock galaxy catalogues for the BOSS Final Data Release , 2015, 1509.06400.

[59]  B. Yanny,et al.  Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.

[60]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[61]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[62]  H. Peiris,et al.  Exploiting the full potential of photometric quasar surveys: Optimal power spectra through blind mitigation of systematics , 2014, 1404.6530.

[63]  Yun Wang,et al.  Figure of merit for dark energy constraints from current observational data , 2008, 0803.4295.

[64]  A. Moss,et al.  Planck data versus large scale structure: Methods to quantify discordance , 2017, 1703.05959.

[65]  W. Percival,et al.  Redshift-space distortions , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[66]  K. Ganga,et al.  Cosmological constraints from a joint analysis of cosmic microwave background and spectroscopic tracers of the large-scale structure , 2017, Monthly Notices of the Royal Astronomical Society.

[67]  R. J. Brunner,et al.  The 2dF-SDSS LRG and QSO (2SLAQ) luminous red galaxy survey , 2006, astro-ph/0607631.

[68]  M. White,et al.  On using angular cross-correlations to determine source redshift distributions , 2013, 1302.0857.

[69]  R. Nichol,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function , 2016, 1607.03145.

[70]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[71]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[72]  E. Gaztañaga,et al.  Combining spectroscopic and photometric surveys using angular cross-correlations – II. Parameter constraints from different physical effects , 2015, 1502.03972.

[73]  R. Nichol,et al.  The Angular Power Spectrum of Edinburgh/Durham Southern Galaxy Catalogue Galaxies , 2001 .

[74]  M. Viel,et al.  Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.

[75]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. I. Theory , 1973 .

[76]  G. Efstathiou,et al.  Statistical inconsistencies in the KiDS-450 data set , 2017, 1707.00483.

[77]  Adam D. Myers,et al.  Ameliorating systematic uncertainties in the angular clustering of galaxies: a study using the SDSS-III , 2011, 1105.2320.

[78]  F. Simons,et al.  Spectral estimation on a sphere in geophysics and cosmology , 2007, 0705.3083.

[79]  J. E. Carlstrom,et al.  CMB lensing tomography with the DES Science Verification galaxies , 2015, Monthly Notices of the Royal Astronomical Society.

[80]  Anthony Challinor,et al.  The linear power spectrum of observed source number counts , 2011, 1105.5292.

[81]  Sarah Bridle,et al.  Optimizing Spectroscopic and Photometric Galaxy Surveys: Same-Sky Benefits for Dark Energy and Modified Gravity , 2013, 1307.8062.

[82]  A. Lewis,et al.  Recovering 3D clustering information with angular correlations , 2012, 1207.6487.

[83]  W. Percival,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: angular clustering tomography and its cosmological implications , 2016, 1607.03144.

[84]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[85]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[86]  R. Nichol,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey : cosmological implications of the Fourier space wedges of the final sample , 2016, 1607.03143.

[87]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[88]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[89]  N. E. Sommer,et al.  Dark Energy Survey year 1 results: Galaxy clustering for combined probes , 2017, Physical Review D.

[90]  T. Schwetz,et al.  Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity , 2016, Journal of High Energy Physics.

[91]  Argelander-Institut fur Astronomie,et al.  Simultaneous measurement of cosmology and intrinsic alignments using joint cosmic shear and galaxy number density correlations , 2009, 0911.2454.

[92]  T. Schwetz,et al.  Updated fit to three neutrino mixing: status of leptonic CP violation , 2014, Journal of High Energy Physics.

[93]  Scoap Updated fit to three neutrino mixing: status of leptonic CP violation , 2014 .

[94]  Alexander S. Szalay,et al.  Fast Cosmic Microwave Background Analyses via Correlation Functions , 2001 .

[95]  F. Abdalla,et al.  A joint analysis for cosmology and photometric redshift calibration using cross-correlations , 2016, 1612.00307.

[96]  H. Peiris,et al.  Unbiased methods for removing systematics from galaxy clustering measurements , 2015, 1509.08933.

[97]  David O. Jones,et al.  The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.

[98]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe , 2001, astro-ph/0105252.

[99]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[100]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: constraints on primordial non-Gaussianity , 2012, 1208.1491.

[101]  Wayne Hu,et al.  Concordance and discordance in cosmology , 2018, Physical Review D.

[102]  Adam Amara,et al.  Integrated approach to cosmology: Combining CMB, large-scale structure and weak lensing , 2016, 1607.01014.

[103]  M. Swanson,et al.  Methods for rapidly processing angular masks of next-generation galaxy surveys , 2007, 0711.4352.

[104]  Shaun A. Thomas,et al.  The angular power spectra of photometric Sloan Digital Sky Survey luminous red galaxies , 2011 .

[105]  G. Efstathiou Myths and truths concerning estimation of power spectra: the case for a hybrid estimator , 2003 .

[106]  E. L. Wright,et al.  Angular power spectrum of the microwave background anisotropy seen by the COBE differential microwave radiometer , 1994 .

[107]  Shaun A. Thomas,et al.  The Angular Power Spectra of Photometric SDSS LRGs , 2010, 1011.2448.

[108]  Cosmic microwave background anisotropy power spectrum statistics for high precision cosmology , 1998, astro-ph/9808292.

[109]  Shaun A. Thomas,et al.  Upper bound of 0.28 eV on neutrino masses from the largest photometric redshift survey. , 2009, Physical review letters.

[110]  F. Abdalla,et al.  Improving lognormal models for cosmological fields , 2016, 1602.08503.

[111]  W. Percival,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the configuration-space clustering wedges , 2016, 1607.03147.

[112]  G. W. Pratt,et al.  Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.

[113]  Samuel Hinton,et al.  ChainConsumer , 2016, J. Open Source Softw..

[114]  O. Lahav,et al.  Upper Bound of Neutrino Masses from Combined Cosmological Observations and Particle Physics Experiments. , 2018, Physical review letters.

[115]  M. G. Hauser,et al.  Statistical analysis of catalogs of extragalactic objects. II - The Abell catalog of rich clusters , 1973 .

[116]  David Schlegel,et al.  SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12: galaxy target selection and large-scale structure catalogues , 2015, 1509.06529.

[117]  A. Heavens,et al.  Parameter inference with estimated covariance matrices , 2015, 1511.05969.