Integration and regulation of glomerular inhibition in the cerebellar granular layer circuit

Inhibitory synapses can be organized in different ways and be regulated by a multitude of mechanisms. One of the best known examples is provided by the inhibitory synapses formed by Golgi cells onto granule cells in the cerebellar glomeruli. These synapses are GABAergic and inhibit granule cells through two main mechanisms, phasic and tonic. The former is based on vesicular neurotransmitter release, the latter on the establishment of tonic γ-aminobutyric acid (GABA) levels determined by spillover and regulation of GABA uptake. The mechanisms of post-synaptic integration have been clarified to a considerable extent and have been shown to differentially involve α1 and α6 subunit-containing GABA-A receptors. Here, after reviewing the basic mechanisms of GABAergic transmission in the cerebellar glomeruli, we examine how inhibition controls signal transfer at the mossy fiber-granule cell relay. First of all, we consider how vesicular release impacts on signal timing and how tonic GABA levels control neurotransmission gain. Then, we analyze the integration of these inhibitory mechanisms within the granular layer network. Interestingly, it turns out that glomerular inhibition is just one element in a large integrated signaling system controlled at various levels by metabotropic receptors. GABA-B receptor activation by ambient GABA regulates glutamate release from mossy fibers through a pre-synaptic cross-talk mechanisms, GABA release through pre-synaptic auto-receptors, and granule cell input resistance through post-synaptic receptor activation and inhibition of a K inward-rectifier current. Metabotropic glutamate receptors (mGluRs) control GABA release from Golgi cell terminals and Golgi cell input resistance and autorhythmic firing. This complex set of mechanisms implements both homeostatic and winner-take-all processes, providing the basis for fine-tuning inhibitory neurotransmission and for optimizing signal transfer through the cerebellar cortex.

[1]  Egidio D'Angelo,et al.  Computational Reconstruction of Pacemaking and Intrinsic Electroresponsiveness in Cerebellar Golgi Cells , 2007, Frontiers in cellular neuroscience.

[2]  Egidio D'Angelo,et al.  Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells , 2006, The Journal of physiology.

[3]  Mark J. Wall,et al.  Endogenous nitric oxide modulates GABAergic transmission to granule cells in adult rat cerebellum , 2003, The European journal of neuroscience.

[4]  G. Richerson,et al.  Looking for GABA in all the Wrong Places: The Relevance of Extrasynaptic GABAA Receptors to Epilepsy , 2004, Epilepsy currents.

[5]  Egidio D’Angelo,et al.  Gating of Long-Term Potentiation by Nicotinic Acetylcholine Receptors at the Cerebellum Input Stage , 2013, PloS one.

[6]  R Angus Silver,et al.  Synaptic and Cellular Properties of the Feedforward Inhibitory Circuit within the Input Layer of the Cerebellar Cortex , 2008, The Journal of Neuroscience.

[7]  D. Attwell,et al.  Tonic excitation and inhibition of neurons: ambient transmitter sources and computational consequences. , 2005, Progress in biophysics and molecular biology.

[8]  D. Kullmann,et al.  GABA uptake regulates cortical excitability via cell type–specific tonic inhibition , 2003, Nature Neuroscience.

[9]  P. Somogyi,et al.  Relative densities of synaptic and extrasynaptic GABAA receptors on cerebellar granule cells as determined by a quantitative immunogold method , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Nadezhda N. Zheleznova,et al.  Function and modulation of δ-containing GABAA receptors , 2009, Psychoneuroendocrinology.

[11]  M Lidierth,et al.  The discharges of cerebellar Golgi cells during locomotion in the cat. , 1987, The Journal of physiology.

[12]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[13]  P. Ascher,et al.  Presynaptic N-methyl-D-aspartate receptors at the parallel fiber-Purkinje cell synapse. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  I. Módy,et al.  Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release , 1991, Brain Research.

[15]  Egidio D'Angelo,et al.  NO enhances presynaptic currents during cerebellar mossy fiber-granule cell LTP. , 2003, Journal of neurophysiology.

[16]  P. Whiting GABA-A receptor subtypes in the brain: a paradigm for CNS drug discovery? , 2003, Drug discovery today.

[17]  H. Lester,et al.  GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus. , 2003, Journal of neurophysiology.

[18]  Eduardo Ros,et al.  Spike Timing Regulation on the Millisecond Scale by Distributed Synaptic Plasticity at the Cerebellum Input Stage: A Simulation Study , 2013, Front. Comput. Neurosci..

[19]  Egidio D'Angelo,et al.  Combinatorial responses controlled by synaptic inhibition in the cerebellum granular layer. , 2010, Journal of neurophysiology.

[20]  T. Otis,et al.  Contributions of the GABAA Receptor α6 Subunit to Phasic and Tonic Inhibition Revealed by a Naturally Occurring Polymorphism in the α6 Gene , 2006, The Journal of Neuroscience.

[21]  Thierry Nieus,et al.  Tonic activation of GABAB receptors reduces release probability at inhibitory connections in the cerebellar glomerulus. , 2009, Journal of neurophysiology.

[22]  C. Valenzuela,et al.  Bestrophin1 Channels are Insensitive to Ethanol and Do not Mediate Tonic GABAergic Currents in Cerebellar Granule Cells , 2012, Front. Neurosci..

[23]  E. De Schutter,et al.  Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. , 1998, Journal of neurophysiology.

[24]  William M. Connelly,et al.  GABAB Receptors Regulate Extrasynaptic GABAA Receptors , 2013, The Journal of Neuroscience.

[25]  R Angus Silver,et al.  The Contribution of Single Synapses to Sensory Representation in Vivo , 2008, Science.

[26]  Urs Gerber,et al.  Golgi Cell-Mediated Activation of Postsynaptic GABAB Receptors Induces Disinhibition of the Golgi Cell-Granule Cell Synapse in Rat Cerebellum , 2012, PloS one.

[27]  AMPAR signaling mediating GABAAR δ subunit up-regulation in cultured mouse cerebellar granule cells , 2010, Neurochemistry International.

[28]  S. Cull-Candy,et al.  Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. , 1996, The Journal of physiology.

[29]  T. Teyler,et al.  Long-term potentiation. , 1987, Annual review of neuroscience.

[30]  D. Kullmann,et al.  Tonically active GABAA receptors: modulating gain and maintaining the tone , 2004, Trends in Neurosciences.

[31]  Tahl Holtzman,et al.  Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs , 2006, The Journal of physiology.

[32]  R. Olsen,et al.  GABAA receptors: Subtypes provide diversity of function and pharmacology , 2009, Neuropharmacology.

[33]  Mark J. Wall,et al.  Development of Action Potential‐dependent and Independent Spontaneous GABAA Receptor‐mediated Currents in Granule Cells of Postnatal Rat Cerebellum , 1997, The European journal of neuroscience.

[34]  D. Rossi,et al.  Spillover-Mediated Transmission at Inhibitory Synapses Promoted by High Affinity α6 Subunit GABAA Receptors and Glomerular Geometry , 1998, Neuron.

[35]  J. Hámori,et al.  Quantitative morphology and synaptology of cerebellar glomeruli in the rat , 1988, Anatomy and Embryology.

[36]  Egidio D'Angelo,et al.  Fast-Reset of Pacemaking and Theta-Frequency Resonance Patterns in Cerebellar Golgi Cells: Simulations of their Impact In Vivo , 2007, Frontiers in cellular neuroscience.

[37]  T. Fuchs,et al.  GABAA Receptor Trafficking-Mediated Plasticity of Inhibitory Synapses , 2011, Neuron.

[38]  P. Somogyi,et al.  Alterations in the expression of GABAA receptor subunits in cerebellar granule cells after the disruption of the α6 subunit gene , 1999, The European journal of neuroscience.

[39]  E. Cherubini,et al.  Generating diversity at GABAergic synapses. , 2001, Trends in neurosciences.

[40]  E. Vizi,et al.  Nonsynaptic receptors for GABA and glutamate. , 2006, Current topics in medicinal chemistry.

[41]  J. Eccles Circuits in the cerebellar control of movement. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[42]  M. Farrant,et al.  Setting the Time Course of Inhibitory Synaptic Currents by Mixing Multiple GABAA Receptor α Subunit Isoforms , 2012, The Journal of Neuroscience.

[43]  S. G. Cohen Discovery and rediscovery. , 1992, Allergy proceedings : the official journal of regional and state allergy societies.

[44]  Egidio D’Angelo,et al.  Cerebellar Granule Cell , 2020, Handbook of the Cerebellum and Cerebellar Disorders.

[45]  Lokeshvar Nath Kalia,et al.  Timing and plasticity in the cerebellum: focus on the granular layer , 2009, Trends in Neurosciences.

[46]  Wade G. Regehr,et al.  Dynamics of Fast and Slow Inhibition from Cerebellar Golgi Cells Allow Flexible Control of Synaptic Integration , 2009, Neuron.

[47]  Dai Watanabe,et al.  mGluR2 Postsynaptically Senses Granule Cell Inputs at Golgi Cell Synapses , 2003, Neuron.

[48]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[49]  D. Harriman CEREBELLAR CORTEX, CYTOLOGY AND ORGANIZATION , 1974 .

[50]  W. Regehr,et al.  Hyperpolarization Induces a Long-Term Increase in the Spontaneous Firing Rate of Cerebellar Golgi Cells , 2013, The Journal of Neuroscience.

[51]  W. Sieghart,et al.  Colocalization of multiple GABAA receptor subtypes with gephyrin at postsynaptic sites , 2000, The Journal of comparative neurology.

[52]  M. C. Angulo,et al.  Target cell-specific modulation of neuronal activity by astrocytes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[53]  R. Macdonald,et al.  Properties of putative cerebellar gamma-aminobutyric acid A receptor isoforms. , 1996, Molecular pharmacology.

[54]  T. Blackburn GabaB receptor pharmacology - a tribute to Norman Bowery. , 2010, Advances in Pharmacology.

[55]  J. Hámori,et al.  Differentiation of cerebellar mossy fiber synapses in the rat: A quantitative electron microscope study , 1983, The Journal of comparative neurology.

[56]  Tamás F Freund,et al.  Interneuron Diversity series: Rhythm and mood in perisomatic inhibition , 2003, Trends in Neurosciences.

[57]  Egidio D'Angelo,et al.  The Critical Role of Golgi Cells in Regulating Spatio-Temporal Integration and Plasticity at the Cerebellum Input Stage , 2008, Front. Neurosci..

[58]  L. Prézeau,et al.  Ca(2+) requirement for high-affinity gamma-aminobutyric acid (GABA) binding at GABA(B) receptors: involvement of serine 269 of the GABA(B)R1 subunit. , 2000, Molecular pharmacology.

[59]  Tiago Branco,et al.  Tonic Inhibition Enhances Fidelity of Sensory Information Transmission in the Cerebellar Cortex , 2012, The Journal of Neuroscience.

[60]  S. Hestrin,et al.  Electrical synapses between Gaba-Releasing interneurons , 2001, Nature Reviews Neuroscience.

[61]  William Wisden,et al.  Adaptive regulation of neuronal excitability by a voltage- independent potassium conductance , 2001, Nature.

[62]  K. Doya,et al.  Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control , 2001, Neuroscience.

[63]  J. Midtgaard,et al.  Synaptic integration in a model of cerebellar granule cells. , 1994, Journal of neurophysiology.

[64]  Egidio D'Angelo,et al.  Granule Cell Ascending Axon Excitatory Synapses onto Golgi Cells Implement a Potent Feedback Circuit in the Cerebellar Granular Layer , 2013, The Journal of Neuroscience.

[65]  R. Shigemoto,et al.  Distinct localization of GABAB receptors relative to synaptic sites in the rat cerebellum and ventrobasal thalamus , 2002, The European journal of neuroscience.

[66]  R. Khazipov,et al.  γ-Aminobutyric acid (GABA): a fast excitatory transmitter which may regulate the development of hippocampal neurones in early postnatal life , 1994 .

[67]  Jan Voogd,et al.  Chapter 5 Cholinergic innervation and receptors in the cerebellum , 1997 .

[68]  J Szentágothai,et al.  Quantitative histological analysis of the cerebellar cortex in the cat. II. Cell numbers and densities in the granular layer. , 1971, Brain research.

[69]  Thierry Nieus,et al.  LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. , 2006, Journal of neurophysiology.

[70]  R. Silver,et al.  Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input , 2010, Neuron.

[71]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[72]  B. Barrell,et al.  Glutamate spillover suppresses inhibition by activating presynaptic mGluRs , 2000, Nature.

[73]  M. Häusser,et al.  High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons , 2007, Nature.

[74]  B Sakmann,et al.  Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch‐clamp study. , 1990, The Journal of physiology.

[75]  David Attwell,et al.  Multiple modes of GABAergic inhibition of rat cerebellar granule cells , 2003, The Journal of physiology.

[76]  Egidio D'Angelo,et al.  Inhibition of constitutive inward rectifier currents in cerebellar granule cells by pharmacological and synaptic activation of GABAB receptors , 2006, The European journal of neuroscience.

[77]  S. Dieudonné,et al.  Submillisecond kinetics and low efficacy of parallel fibre‐Golgi cell synaptic currents in the rat cerebellum , 1998, The Journal of physiology.

[78]  E. D’Angelo,et al.  Theta-Frequency Resonance at the Cerebellum Input Stage Improves Spike Timing on the Millisecond Time-Scale , 2013, Front. Neural Circuits.

[79]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[80]  David Attwell,et al.  Tonic and Spillover Inhibition of Granule Cells Control Information Flow through Cerebellar Cortex , 2002, Neuron.

[81]  D Jaarsma,et al.  Cholinergic innervation and receptors in the cerebellum. , 1997, Progress in brain research.

[82]  E. D’Angelo,et al.  Discovery and rediscoveries of Golgi cells , 2010, The Journal of physiology.

[83]  F. Stephenson,et al.  The GABAA receptors. , 1995, The Biochemical journal.

[84]  Ligand-Gated Ion Channel Subunit Partnerships: GABAAReceptor α6 Subunit Gene Inactivation Inhibits δ Subunit Expression , 1997, The Journal of Neuroscience.

[85]  R. Macdonald,et al.  Assembly of GABAA receptor subunits: role of the delta subunit , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[86]  I. Módy,et al.  Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by δ subunit-containing GABAA receptors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[87]  J. Barker,et al.  Cl− channels are randomly activated by continuous GABA secretion in cultured embryonic rat hippocampal neurons , 1993, Neuroscience Letters.

[88]  Christof Koch,et al.  Shunting Inhibition Does Not Have a Divisive Effect on Firing Rates , 1997, Neural Computation.

[89]  I. Módy,et al.  Activation of GABAA Receptors: Views from Outside the Synaptic Cleft , 2007, Neuron.

[90]  E. D’Angelo,et al.  Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. , 1995, The Journal of physiology.

[91]  Mark J. Wall,et al.  Furosemide reveals heterogeneous GABAA receptor expression at adult rat Golgi cell to granule cell synapses , 2002, Neuropharmacology.

[92]  M. Farrant,et al.  Whole‐cell and single‐channel currents activated by GABA and glycine in granule cells of the rat cerebellum. , 1995, The Journal of physiology.

[93]  Alastair M. Hosie,et al.  Profound Desensitization by Ambient GABA Limits Activation of δ-Containing GABAA Receptors during Spillover , 2011, The Journal of Neuroscience.

[94]  Kanichay Rt,et al.  Synaptic and Cellular Properties of the Feedforward Inhibitory Circuit within the Input Layer of the Cerebellar Cortex , 2008 .

[95]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[96]  Egidio D'Angelo,et al.  The cerebellar Golgi cell and spatiotemporal organization of granular layer activity , 2013, Front. Neural Circuits.

[97]  Egidio D'Angelo,et al.  Frontiers in Cellular Neuroscience Cellular Neuroscience , 2022 .

[98]  Werner Sieghart,et al.  International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric AcidA Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update , 2008, Pharmacological Reviews.

[99]  Sanford L. Palay,et al.  The Golgi Cells , 1974 .

[100]  M. Häusser,et al.  Integration of quanta in cerebellar granule cells during sensory processing , 2004, Nature.

[101]  R. Angus Silver,et al.  GABA Spillover from Single Inhibitory Axons Suppresses Low-Frequency Excitatory Transmission at the Cerebellar Glomerulus , 2000, The Journal of Neuroscience.

[102]  B. Orser,et al.  Extrasynaptic GABAA receptors are critical targets for sedative-hypnotic drugs. , 2006, Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine.

[103]  S. Dieudonné,et al.  Serotonin-Driven Long-Range Inhibitory Connections in the Cerebellar Cortex , 2000, The Journal of Neuroscience.

[104]  Court Hull,et al.  Identification of an Inhibitory Circuit that Regulates Cerebellar Golgi Cell Activity , 2012, Neuron.

[105]  E. D’Angelo,et al.  Increased neurotransmitter release during long‐term potentiation at mossy fibre–granule cell synapses in rat cerebellum , 2004, The Journal of physiology.

[106]  E. Costa,et al.  Functional diversity of GABA activated Cl− currents in Purkinje versus granule neurons in rat cerebellar slices , 1994, Neuron.

[107]  J. Albus A Theory of Cerebellar Function , 1971 .

[108]  Egidio D'Angelo,et al.  The Spatial Organization of Long-Term Synaptic Plasticity at the Input Stage of Cerebellum , 2007, The Journal of Neuroscience.

[109]  E. Cherubini,et al.  Generating diversity at GAB Aergic synapses , 2001, Trends in Neurosciences.

[110]  E. D'Angelo,et al.  Long-Term Potentiation of Intrinsic Excitability at the Mossy Fiber–Granule Cell Synapse of Rat Cerebellum , 2000, The Journal of Neuroscience.

[111]  D. Rossi,et al.  Primate cerebellar granule cells exhibit a tonic GABAAR conductance that is not affected by alcohol: a possible cellular substrate of the low level of response phenotype , 2013, Front. Neural Circuits.

[112]  Egidio D'Angelo,et al.  Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation , 2013, Front. Neural Circuits.

[113]  J. Szentágothai,et al.  Quantitative histological analysis of the cerebellar cortex in the cat. I. Number and arrangement in space of the Purkinje cells. , 1971, Brain research.

[114]  Richard Miles,et al.  Interneuron Diversity series: Fast in, fast out – temporal and spatial signal processing in hippocampal interneurons , 2004, Trends in Neurosciences.

[115]  J. Eccles,et al.  Golgi Cell Inhibition in the Cerebellar Cortex , 1964, Nature.

[116]  William M. Connelly,et al.  Metabotropic regulation of extrasynaptic GABAA receptors , 2013, Front. Neural Circuits.

[117]  Thierry Nieus,et al.  A Realistic Large-Scale Model of the Cerebellum Granular Layer Predicts Circuit Spatio-Temporal Filtering Properties , 2009, Front. Cell. Neurosci..

[118]  R. Silver,et al.  Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation , 2003, Neuron.

[119]  H. Noda,et al.  Discharges of Purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements and fixation , 1980, The Journal of physiology.

[120]  Peter Somogyi,et al.  Segregation of Different GABAA Receptors to Synaptic and Extrasynaptic Membranes of Cerebellar Granule Cells , 1998, The Journal of Neuroscience.

[121]  I. Módy,et al.  Extrasynaptic GABAA Receptors: Their Function in the CNS and Implications for Disease , 2012, Neuron.

[122]  Hee-Sup Shin,et al.  Channel-Mediated Tonic GABA Release from Glia , 2010, Science.

[123]  W. Sieghart,et al.  AMPA and kainate receptors mediate mutually exclusive effects on GABAA receptor expression in cultured mouse cerebellar granule neurones , 2007, Journal of neurochemistry.

[124]  S. Moss,et al.  The dynamic modulation of GABA(A) receptor trafficking and its role in regulating the plasticity of inhibitory synapses. , 2011, Physiological reviews.

[125]  J. Clements,et al.  Unveiling synaptic plasticity: a new graphical and analytical approach , 2000, Trends in Neurosciences.

[126]  Erik De Schutter,et al.  Long-term depression at parallel fiber to Golgi cell synapses. , 2010, Journal of neurophysiology.

[127]  B. Katz,et al.  The effect of calcium on acetylcholine release from motor nerve terminals , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[128]  E De Schutter,et al.  Cerebellar Golgi cells in the rat: receptive fields and timing of responses to facial stimulation , 1999, The European journal of neuroscience.