Quantum Approximate Optimization With Parallelizable Gates

The quantum approximate optimization algorithm (QAOA) has been introduced as a heuristic digital quantum computing scheme to find approximate solutions of combinatorial optimization problems. We present a scheme to parallelize this approach for arbitrary all-to-all connected problem graphs in a layout of quantum bits (qubits) with nearest-neighbor interactions. The protocol consists of single qubit operations that encode the optimization problem, whereas interactions are problem-independent pairwise CNOT gates among nearest neighbors. This allows for a parallelizable implementation in quantum devices with a planar lattice geometry. The basis of this proposal is a lattice gauge model, which also introduces additional parameters and protocols for QAOA to improve the efficiency.

[1]  Vasil S. Denchev,et al.  Computational multiqubit tunnelling in programmable quantum annealers , 2015, Nature Communications.

[2]  D. McMahon Adiabatic Quantum Computation , 2008 .

[3]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[4]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[5]  E. Rieffel,et al.  Near-optimal quantum circuit for Grover's unstructured search using a transverse field , 2017, 1702.02577.

[6]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[7]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[8]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[9]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[10]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[11]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[12]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[13]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[14]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[15]  J. Cirac,et al.  Goals and opportunities in quantum simulation , 2012, Nature Physics.

[16]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[17]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[18]  Wenlong Wang,et al.  Comparing Monte Carlo methods for finding ground states of Ising spin glasses: Population annealing, simulated annealing, and parallel tempering. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Andrea Rocchetto,et al.  Stabilizers as a design tool for new forms of the Lechner-Hauke-Zoller annealer , 2016, Science Advances.

[20]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[21]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[22]  M. Troyer,et al.  Nonstoquastic Hamiltonians and quantum annealing of an Ising spin glass , 2016, 1609.06558.

[23]  Daniel A. Lidar,et al.  Simulated-quantum-annealing comparison between all-to-all connectivity schemes , 2016, 1603.03755.

[24]  P. Zoller,et al.  A coherent quantum annealer with Rydberg atoms , 2016, Nature Communications.

[25]  C. K. Andersen,et al.  Quantum annealing with all-to-all connected nonlinear oscillators , 2016, Nature Communications.

[26]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[27]  M. Troyer,et al.  Quantum versus classical annealing of Ising spin glasses , 2014, Science.

[28]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[29]  Robert König,et al.  Quantum advantage with shallow circuits , 2017, Science.

[30]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[31]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[32]  David P. DiVincenzo,et al.  The complexity of stoquastic local Hamiltonian problems , 2006, Quantum Inf. Comput..

[33]  Hidetoshi Nishimori,et al.  Exponential Enhancement of the Efficiency of Quantum Annealing by Non-Stoquastic Hamiltonians , 2016, Frontiers ICT.

[34]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[35]  P. Zoller,et al.  A quantum annealing architecture with all-to-all connectivity from local interactions , 2015, Science Advances.

[36]  Blake R. Johnson,et al.  Unsupervised Machine Learning on a Hybrid Quantum Computer , 2017, 1712.05771.

[37]  J. Preskill,et al.  Error correction for encoded quantum annealing , 2015, 1511.00004.

[38]  P. Zoller,et al.  A transmon quantum annealer: decomposing many-body Ising constraints into pair interactions , 2016, 1604.02359.

[39]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.