ANALYSIS OF KEPLER'S SHORT-CADENCE PHOTOMETRY FOR TrES-2b

We present an analysis of 18 short-cadence (SC) transit lightcurves of TrES-2b using quarter 0 (Q0) and quarter 1 (Q1) from the Kepler Mission. The photometry is of unprecedented precision, 237ppm per minute, allowing for the most accurate determination of the transit parameters yet obtained for this system. Global fits of the transit photometry, radial velocities and known transit times are used to obtain a self-consistent set of refined parameters for this system, including updated stellar and planetary parameters. Special attention is paid to fitting for limb darkening and eccentricity. We place an upper limit on the occultation depth to be < 72.9ppm to 3-� confidence, indicating TrES-2b has the lowest determined geometric albedo for an exoplanet, of Ag < 0.146. We also produce a transit timing analysis using Kepler’s short-cadence data and demonstrate exceptional timing precision at the level of a few seconds for each transit event. With 18 fully-sampled transits at such high precision, we are able to produce stringent constraints on the presence of perturbing planets, Trojans and extrasolar moons. We introduce the novel use of control data to identify phasing effects. We also exclude the previously proposed hypotheses of short-period TTV and additional transits but find the hypothesis of long-term inclination change is neither supported nor refuted by our analysis. Subject headings: planetary systems — stars: individual (TrES-2b) techniques: spectroscopic, photometric

[1]  D. Kipping,et al.  Nightside pollution of exoplanet transit depths , 2009, 0912.1133.

[2]  S. Seager,et al.  A Unique Solution of Planet and Star Parameters from an Extrasolar Planet Transit Light Curve , 2002, astro-ph/0206228.

[3]  B. Scott Gaudi,et al.  Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates , 2010, 1005.4415.

[4]  E. Ford,et al.  Observational Constraints on Trojans of Transiting Extrasolar Planets , 2006, astro-ph/0609298.

[5]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[6]  Jena,et al.  Planetary transit observations at the University Observatory Jena: TrES-2 , 2009, 0905.1842.

[7]  Massachusetts Institute of Technology,et al.  Improving Stellar and Planetary Parameters of Transiting Planet Systems: The Case of TrES-2 , 2007, 0704.2938.

[8]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[9]  J. Schmitt,et al.  Detection of orbital parameter changes in the TrES-2 exoplanet? , 2009, 0905.4030.

[10]  D. Kipping Transiting planets – light-curve analysis for eccentric orbits , 2008, 0807.0096.

[11]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[12]  A. Liddle,et al.  Information criteria for astrophysical model selection , 2007, astro-ph/0701113.

[13]  William J. Borucki,et al.  The Kepler Mission: A wide-field transit search for terrestrial planets , 2005 .

[14]  Jennifer C. Yee,et al.  Analytic Approximations for Transit Light-Curve Observables, Uncertainties, and Covariances , 2008, 0805.0238.

[15]  L. Close,et al.  ON THE APPARENT ORBITAL INCLINATION CHANGE OF THE EXTRASOLAR TRANSITING PLANET TrES-2b , 2009, 0907.1685.

[16]  David Charbonneau,et al.  The transit light curve project. I. Four consecutive transits of the exoplanet XO-1b , 2006 .

[17]  D. W. Allan,et al.  Statistics of atomic frequency standards , 1966 .

[18]  Multi-band transit observations of the TrES-2b exoplanet , 2009, 0912.4428.

[19]  California Institute of Technology,et al.  HAT-P-24b: AN INFLATED HOT JUPITER ON A 3.36 DAY PERIOD TRANSITING A HOT, METAL-POOR STAR , 2010, 1008.3389.

[20]  R. Paul Butler,et al.  The Prograde Orbit of Exoplanet TrES-2b , 2008, 0804.2259.

[21]  Sara Seager,et al.  The Very Low Albedo of an Extrasolar Planet: MOST Space-based Photometry of HD 209458 , 2007, 0711.4111.

[22]  Joshua N. Winn,et al.  NEAR-INFRARED TRANSIT PHOTOMETRY OF THE EXOPLANET HD 149026b , 2009, 0902.1542.

[23]  Matthew J. Holman,et al.  The Use of Transit Timing to Detect Terrestrial-Mass Extrasolar Planets , 2005, Science.

[24]  The Detectability of Transit Depth Variations due to Exoplanetary Oblateness and Spin Precession , 2010, 1005.1663.

[25]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[26]  J. Almenara,et al.  Transit timing analysis of the exoplanets TrES-1 and TrES-2 , 2009, 0909.1564.

[27]  Eric B. Ford,et al.  Using Transit Timing Observations to Search for Trojans of Transiting Extrasolar Planets , 2007, 0705.0356.

[28]  D. Kipping Investigations of approximate expressions for the transit duration , 2010, 1004.3819.

[29]  David Charbonneau,et al.  TrES-2: The First Transiting Planet in the Kepler Field , 2006, astro-ph/0609335.

[30]  Joshua N. Winn,et al.  PARAMETER ESTIMATION FROM TIME-SERIES DATA WITH CORRELATED ERRORS: A WAVELET-BASED METHOD AND ITS APPLICATION TO TRANSIT LIGHT CURVES , 2009, 0909.0747.

[31]  David M. Kipping,et al.  On the detectability of habitable exomoons with Kepler-class photometry , 2009, 0907.3909.

[32]  Y.-W. Lee,et al.  Toward Better Age Estimates for Stellar Populations: The Y2 Isochrones for Solar Mixture , 2001 .

[33]  Th. Henning,et al.  Binarity of transit host stars - Implications for planetary parameters , 2009, 0902.2179.

[34]  A. Pál Properties of analytic transit light-curve models , 2008 .

[35]  M. Holman,et al.  The Transit Light Curve (TLC) Project. VI. Three Transits of the Exoplanet TrES-2 , 2007, 0704.2907.

[36]  UC Berkeley,et al.  HAT-P-11b: A SUPER-NEPTUNE PLANET TRANSITING A BRIGHT K STAR IN THE KEPLER FIELD , 2009, 0901.0282.

[37]  David M. Kipping,et al.  Transit Timing Effects Due to an Exomoon , 2008, 0810.2243.

[38]  R. C. Domingos,et al.  Stable satellites around extrasolar giant planets , 2006 .

[39]  D. Charbonneau,et al.  DETECTION OF PLANETARY EMISSION FROM THE EXOPLANET TrES-2 USING SPITZER/IRAC , 2009, 0909.3073.

[40]  Robert J. Brunner,et al.  Quasars Probing Quasars. I. Optically Thick Absorbers near Luminous Quasars , 2006, astro-ph/0603742.

[41]  Tsevi Mazeh,et al.  Detection of the ellipsoidal and the relativistic beaming effects in the CoRoT-3 lightcurve , 2010, 1008.3028.

[42]  David M. Kipping,et al.  AN INDEPENDENT ANALYSIS OF KEPLER-4b THROUGH KEPLER-8b , 2010, 1004.3538.

[43]  Howard Isaacson,et al.  Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations , 2010, Science.

[44]  A. Burrows,et al.  ATMOSPHERE AND SPECTRAL MODELS OF THE KEPLER-FIELD PLANETS HAT-P-7b AND TrES-2 , 2010, 1006.1660.