Potential Drifts of Solid‐Contacted Ion‐Selective Electrodes Due to Zero‐Current Ion Fluxes Through the Sensor Membrane

A thin aqueous layer is formed between the polymeric ion-selective membrane and an inner gold electrode. Its composition can be altered upon sample changes, which leads to drifting potentials. It is shown by theory and experiment that interfering ions enter the inner layer much faster than primary ones. Measurement protocols with equal contact times for the sample and the reconditioning solution can therefore not eliminate the effect of changes in the composition of the inner solution. The formation of an inner aqueous film and corresponding drifts for solid-contacted membrane electrodes can be avoided by creating a lipophilic self-assembled monolayer on the surface of the inner electrode.

[1]  H. J. James,et al.  Coated wire ion-selective electrodes. , 1971, Analytical chemistry.

[2]  G. Rechnitz Mechanistic aspects of ion-sensitive membrane electrodes. A subjective view , 1973 .

[3]  R. Cattrall,et al.  Some alkylphosphoric acid esters for use in coated-wire calcium-selective electrodes: Part I. Response characteristics , 1975 .

[4]  A. Hulanicki,et al.  Calcium-selective electrodes with pvc membranes and solid internal contacts , 1976 .

[5]  W. E. Morf The Origin of Transient Response Phenomena of Ion-Selective Electrodes , 1977 .

[6]  W. E. Morf,et al.  Mechanism of neutral carrier mediated ion transport through ion-selective bulk membranes , 1977 .

[7]  W. E. Morf,et al.  Durch elektrisch geladene Ionophore induzierter Ionentransport in Modellmembranen mit Selektivität für Magnesium und Calcium , 1979 .

[8]  W. Simon,et al.  Lipophilic Synthetic Monoamides of Dicarboxylic Acids as Ionophores for Alkaline Earth Metal Cations , 1982 .

[9]  Albert van den Berg,et al.  Modification of ISFESTs by covalent anchoring of poly(hydroxyethyl methacrylate) hydrogel. Introduction of a thermodynamically defined semiconductor-sensing membrane interface , 1990 .

[10]  C. Goss,et al.  Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates , 1991 .

[11]  A R Midgley,et al.  Electrochemical performance, biocompatibility, and adhesion of new polymer matrices for solid-state ion sensors. , 1991, Analytical chemistry.

[12]  Dermot Diamond,et al.  All-solid-state sodium-selective electrode based on a calixarene ionophore in a poly(vinyl chloride) membrane with a polypyrrole solid contact , 1992 .

[13]  R. Buck,et al.  New neutral carrier-based H+ selective membrane electrodes , 1992 .

[14]  A. Ivaska,et al.  All solid-state poly(vinyl chloride) membrane ion-selective electrodes with poly(3-octylthiophene) solid internal contact , 1994 .

[15]  P. Hauser,et al.  A potassium-ion selective electrode with valinomycin based poly(vinyl chloride) membrane and a poly(vinyl ferrocene) solid contact , 1995 .

[16]  Michael R. Neuman,et al.  Microfabricated sensor arrays sensitive to pH and K+ for ionic distribution measurements in the beating heart , 1995 .

[17]  Johan Bobacka,et al.  Single-piece all-solid-state ion-selective electrode , 1995 .

[18]  D. J. Harrison,et al.  Dual-Sorption Model of Water Uptake in Poly(vinyl chloride)-Based Ion-Selective Membranes: Experimental Water Concentration and Transport Parameters , 1996 .

[19]  Richard B. Brown,et al.  Enhancing EMF stability of solid-state ion-selective sensors by incorporating lipophilic silver-ligand complexes within polymeric films , 1996 .

[20]  E. Pretsch,et al.  Large Improvement of the Lower Detection Limit of Ion-Selective Polymer Membrane Electrodes , 1997 .

[21]  Ernö Pretsch,et al.  Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. , 1997, Chemical reviews.

[22]  D. Diamond,et al.  Solid-State Ion-Selective Electrode Arrays , 1998 .

[23]  E. Pretsch,et al.  Chromoionophore-Mediated Imaging of Water Transport in Ion-Selective Membranes , 1998 .

[24]  E. Bakker,et al.  Effect of Transmembrane Electrolyte Diffusion on the Detection Limit of Carrier-Based Potentiometric Ion Sensors , 1998 .

[25]  U. Suter,et al.  Strongly attached ultrathin polymer layers on metal surfaces obtained by activation of Si–H bonds , 1999 .

[26]  Ernö Pretsch,et al.  Lowering the detection limit of solvent polymeric ion-selective electrodes. 1. Modeling the influence of steady-state ion fluxes , 1999 .

[27]  J. Bobacka,et al.  Potential Stability of All-Solid-State Ion-Selective Electrodes Using Conducting Polymers as Ion-to-Electron Transducers. , 1999, Analytical chemistry.

[28]  Ernö Pretsch,et al.  Lowering the Detection Limit of Solvent Polymeric Ion-Selective Membrane Electrodes. 2. Influence of Composition of Sample and Internal Electrolyte Solution , 1999 .

[29]  W. E. Morf,et al.  Effects of ion transport on the potential response of ionophore-based membrane electrodes: a theoretical approach , 1999 .

[30]  Ion-partitioning membrane-based electrochemical sensors , 2000, Analytical chemistry.

[31]  Calculated effects of membrane transport on the long-term response behavior of polymeric membrane ion-selective electrodes , 2000 .