Computing the field of values and pseudospectra using the Lanczos method with continuation
暂无分享,去创建一个
[1] J. L. Rigal,et al. On the Compatibility of a Given Solution With the Data of a Linear System , 1967, JACM.
[2] T. Ström. On Logarithmic Norms , 1975 .
[3] Charles R. Johnson. NUMERICAL DETERMINATION OF THE FIELD OF VALUES OF A GENERAL COMPLEX MATRIX , 1978 .
[4] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[5] B. Parlett,et al. On estimating the largest eigenvalue with the Lanczos algorithm , 1982 .
[6] Y. Saad,et al. Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems , 1984 .
[7] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[8] Axel Ruhe. Closest normal matrix finally found! , 1987 .
[9] H. V. D. Vorst,et al. The convergence behavior of ritz values in the presence of close eigenvalues , 1987 .
[10] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[11] Iain S. Duff,et al. Users' guide for the Harwell-Boeing sparse matrix collection (Release 1) , 1992 .
[12] Henryk Wozniakowski,et al. Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992, SIAM J. Matrix Anal. Appl..
[13] J. Kuczy,et al. Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992 .
[14] Anne E. Trefethen,et al. Hydrodynamic Stability Without Eigenvalues , 1993, Science.
[15] Stiffness of ODEs , 1993 .
[16] Thierry BraconnieryCERFACS. Stopping Criteria for Eigensolvers , 1994 .
[17] Lloyd N. Trefethen,et al. Pseudospectra of the Convection-Diffusion Operator , 1993, SIAM J. Appl. Math..
[18] F. Chatelin,et al. Highly nonnormal eigenproblems in the aeronautical industry , 1995 .
[19] Françoise Chaitin-Chatelin,et al. Lectures on finite precision computations , 1996, Software, environments, tools.
[20] Martin Brühl. A curve tracing algorithm for computing the pseudospectrum , 1996 .
[21] Kim-Chuan Toh,et al. Calculation of Pseudospectra by the Arnoldi Iteration , 1996, SIAM J. Sci. Comput..
[22] G. Watson. Computing the numerical radius , 1996 .
[23] G. A. Watson,et al. An algorithm for computing the numerical radius , 1997 .
[24] S. H. Lui,et al. Computation of Pseudospectra by Continuation , 1997, SIAM J. Sci. Comput..
[25] Thierry Braconnier,et al. Innuence of Orthogonality on the Backward Error and the Stopping Criterion for Krylov Methods Departments of Mathematics Innuence of Orthogonality on the Backward Error and the Stopping Criterion for Krylov Methods , 2007 .