Computing the field of values and pseudospectra using the Lanczos method with continuation

The field of values and pseudospectra are useful tools for understanding the behaviour of various matrix processes. To compute these subsets of the complex plane it is necessary to estimate one or two eigenvalues of a large number of parametrized Hermitian matrices; these computations are prohibitively expensive for large, possibly sparse, matrices, if done by use of the QR algorithm. We describe an approach based on the Lanczos method with selective reorthogonalization and Chebyshev acceleration that, when combined with continuation and a shift and invert technique, enables efficient and reliable computation of the field of values and pseudospectra for large matrices. The idea of using the Lanczos method with continuation to compute pseudospectra is not new, but in experiments reported here our algorithm is faster and more accurate than existing algorithms of this type.

[1]  J. L. Rigal,et al.  On the Compatibility of a Given Solution With the Data of a Linear System , 1967, JACM.

[2]  T. Ström On Logarithmic Norms , 1975 .

[3]  Charles R. Johnson NUMERICAL DETERMINATION OF THE FIELD OF VALUES OF A GENERAL COMPLEX MATRIX , 1978 .

[4]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[5]  B. Parlett,et al.  On estimating the largest eigenvalue with the Lanczos algorithm , 1982 .

[6]  Y. Saad,et al.  Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems , 1984 .

[7]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[8]  Axel Ruhe Closest normal matrix finally found! , 1987 .

[9]  H. V. D. Vorst,et al.  The convergence behavior of ritz values in the presence of close eigenvalues , 1987 .

[10]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[11]  Iain S. Duff,et al.  Users' guide for the Harwell-Boeing sparse matrix collection (Release 1) , 1992 .

[12]  Henryk Wozniakowski,et al.  Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992, SIAM J. Matrix Anal. Appl..

[13]  J. Kuczy,et al.  Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992 .

[14]  Anne E. Trefethen,et al.  Hydrodynamic Stability Without Eigenvalues , 1993, Science.

[15]  Stiffness of ODEs , 1993 .

[16]  Thierry BraconnieryCERFACS Stopping Criteria for Eigensolvers , 1994 .

[17]  Lloyd N. Trefethen,et al.  Pseudospectra of the Convection-Diffusion Operator , 1993, SIAM J. Appl. Math..

[18]  F. Chatelin,et al.  Highly nonnormal eigenproblems in the aeronautical industry , 1995 .

[19]  Françoise Chaitin-Chatelin,et al.  Lectures on finite precision computations , 1996, Software, environments, tools.

[20]  Martin Brühl A curve tracing algorithm for computing the pseudospectrum , 1996 .

[21]  Kim-Chuan Toh,et al.  Calculation of Pseudospectra by the Arnoldi Iteration , 1996, SIAM J. Sci. Comput..

[22]  G. Watson Computing the numerical radius , 1996 .

[23]  G. A. Watson,et al.  An algorithm for computing the numerical radius , 1997 .

[24]  S. H. Lui,et al.  Computation of Pseudospectra by Continuation , 1997, SIAM J. Sci. Comput..

[25]  Thierry Braconnier,et al.  Innuence of Orthogonality on the Backward Error and the Stopping Criterion for Krylov Methods Departments of Mathematics Innuence of Orthogonality on the Backward Error and the Stopping Criterion for Krylov Methods , 2007 .