An Improved Chaotic Flower Pollination Algorithm for Solving LargeInteger Programming Problems

Flower pollination Algorithm is a recently-developed method in the field of computational intelligence. In this paper is presented an improved version of Flower pollination Meta-heuristic Algorithm, (FPPSO), for solving integer programming problems. The proposed algorithm combines the standard flower pollination algorithm (FP) with the particle swarm optimization (PSO) algorithm to improve the searching accuracy. Numerical results show that the FPPSO is able to obtain the optimal results in comparison to traditional methods (branch and bound) and other harmony search algorithms. However, the benefits of this proposed algorithm is in its ability to obtain the optimal solution within less computation, which save time in comparison with the branch and bound algorithm (exact solution method).

[1]  Guy Desaulniers,et al.  An extended branch-and-bound method for locomotive assignment , 2003 .

[2]  Robert C. Hilborn,et al.  Chaos and Nonlinear Dynamics , 2000 .

[3]  G. Cheng,et al.  On the efficiency of chaos optimization algorithms for global optimization , 2007 .

[4]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[5]  Egon Balas,et al.  Integer Programming , 2021, Encyclopedia of Optimization.

[6]  H. Paul Williams,et al.  Logic and Integer Programming , 2009, Logic and Integer Programming.

[7]  John K. Karlof,et al.  Integer programming : theory and practice , 2005 .

[8]  Bilal Alatas,et al.  Chaotic harmony search algorithms , 2010, Appl. Math. Comput..

[9]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[10]  Wei Gong,et al.  Chaos Ant Colony Optimization and Application , 2009, 2009 Fourth International Conference on Internet Computing for Science and Engineering.

[11]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[12]  Ralph E. Gomory Early Integer Programming , 2002, Oper. Res..

[13]  Ralph E. Gomory,et al.  Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.

[14]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[15]  Di He,et al.  Chaotic characteristics of a one-dimensional iterative map with infinite collapses , 2001 .

[16]  Huanwen Tang,et al.  Application of chaos in simulated annealing , 2004 .

[17]  Günter Rudolph,et al.  An Evolutionary Algorithm for Integer Programming , 1994, PPSN.

[18]  A. Wolf,et al.  13. Quantifying chaos with Lyapunov exponents , 1986 .

[19]  Mohammad Saleh Tavazoei,et al.  Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms , 2007, Appl. Math. Comput..

[20]  Mohamed Abdel-Baset,et al.  An Improved Chaotic Bat Algorithm for Solving Integer Programming Problems , 2014 .

[21]  Andries Petrus Engelbrecht,et al.  Differential evolution for integer programming problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[22]  Milan Tuba,et al.  An ant colony optimization algorithm with improved pheromone correction strategy for the minimum weight vertex cover problem , 2011, Appl. Soft Comput..

[23]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[24]  Xin-She Yang,et al.  Flower Pollination Algorithm for Global Optimization , 2012, UCNC.

[25]  M. Yamaguti,et al.  Chaos and Fractals , 1987 .

[26]  Leandro dos Santos Coelho,et al.  Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization , 2008, Expert Syst. Appl..

[27]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[28]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[29]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[30]  Mahamed G. H. Omran,et al.  Global-best harmony search , 2008, Appl. Math. Comput..

[31]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[32]  Der-San Chen,et al.  Applied Integer Programming: Modeling and Solution , 2010 .

[33]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[34]  Dimitris Bertsimas,et al.  Optimization over integers , 2005 .

[35]  Bilal Alatas,et al.  Chaotic bee colony algorithms for global numerical optimization , 2010, Expert Syst. Appl..

[36]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[37]  Dervis Karaboga,et al.  Solving Integer Programming Problems by Using Artificial Bee Colony Algorithm , 2009, AI*IA.

[38]  Milan Tuba,et al.  Ant colony optimization algorithm with pheromone correction strategy for the minimum connected dominating set problem , 2013, Comput. Sci. Inf. Syst..

[39]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[40]  M. Padberg,et al.  Solving airline crew scheduling problems by branch-and-cut , 1993 .

[41]  Milan Tuba,et al.  Swarm intelligence algorithms parameter tuning , 2012 .

[42]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .