Finite Blocklength Converse Bounds for Quantum Channels

We derive upper bounds on the rate of transmission of classical information over quantum channels by block codes with a given blocklength and error probability, for both entanglement-assisted and unassisted codes, in terms of a unifying framework of quantum hypothesis testing with restricted measurements. Our bounds do not depend on any special property of the channel (such as memorylessness) and generalize both a classical converse of Polyanskiy, Poor, and Verdú as well as a quantum converse of Renner and Wang, and have a number of desirable properties. In particular, our bound on entanglement-assisted codes is a semidefinite program and for memoryless channels, its large blocklength limit is the well-known formula for entanglement-assisted capacity due to Bennett, Shor, Smolin, and Thapliyal.

[1]  Yury Polyanskiy,et al.  Saddle Point in the Minimax Converse for Channel Coding , 2013, IEEE Transactions on Information Theory.

[2]  Naresh Sharma,et al.  Fundamental bound on the reliability of quantum information transmission , 2012, Physical review letters.

[3]  S. Wehner,et al.  An experimental implementation of oblivious transfer in the noisy storage model , 2012, Nature Communications.

[4]  S. Wehner,et al.  Experimental implementation of bit commitment in the noisy-storage model , 2012, Nature Communications.

[5]  Mario Berta,et al.  Quantum to Classical Randomness Extractors , 2011, IEEE Transactions on Information Theory.

[6]  William Matthews,et al.  A Linear Program for the Finite Block Length Converse of Polyanskiy–Poor–Verdú Via Nonsignaling Codes , 2011, IEEE Transactions on Information Theory.

[7]  F. Brandão,et al.  Entanglement cost of quantum channels , 2011, 2012 IEEE International Symposium on Information Theory Proceedings.

[8]  Nilanjana Datta,et al.  A Smooth Entropy Approach to Quantum Hypothesis Testing and the Classical Capacity of Quantum Channels , 2011, IEEE Transactions on Information Theory.

[9]  F. Brandão,et al.  Strong converse capacities of quantum channels for classical information , 2011 .

[10]  Nilanjana Datta,et al.  One-Shot Entanglement-Assisted Quantum and Classical Communication , 2011, IEEE Transactions on Information Theory.

[11]  Joseph M. Renes,et al.  Noisy Channel Coding via Privacy Amplification and Information Reconciliation , 2010, IEEE Transactions on Information Theory.

[12]  Masahito Hayashi,et al.  Quantum Information: An Introduction , 2010 .

[13]  S. Verdú,et al.  Arimoto channel coding converse and Rényi divergence , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[14]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[15]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[16]  Jürg Wullschleger,et al.  Unconditional Security From Noisy Quantum Storage , 2009, IEEE Transactions on Information Theory.

[17]  S. Wehner,et al.  A strong converse for classical channel coding using entangled inputs. , 2009, Physical review letters.

[18]  Nilanjana Datta,et al.  Generalized relative entropies and the capacity of classical-quantum channels , 2008, 0810.3478.

[19]  Giacomo Mauro D'Ariano,et al.  Classical randomness in quantum measurements , 2004, quant-ph/0408115.

[20]  S. Virmani,et al.  Construction of extremal local positive-operator-valued measures under symmetry , 2002, quant-ph/0212020.

[21]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[22]  E. Rains A semidefinite program for distillable entanglement , 2000, IEEE Trans. Inf. Theory.

[23]  Michael D. Westmoreland,et al.  Optimal signal ensembles , 1999, quant-ph/9912122.

[24]  A. Holevo,et al.  Capacity of quantum Gaussian channels , 1999 .

[25]  E. Rains RIGOROUS TREATMENT OF DISTILLABLE ENTANGLEMENT , 1998, quant-ph/9809078.

[26]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[27]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[28]  C. Adami,et al.  VON NEUMANN CAPACITY OF NOISY QUANTUM CHANNELS , 1996, quant-ph/9609024.

[29]  D. Mayers Unconditionally secure quantum bit commitment is impossible , 1996, quant-ph/9605044.

[30]  H. Chau,et al.  Why quantum bit commitment and ideal quantum coin tossing are impossible , 1996, quant-ph/9605026.

[31]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[32]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .