From convergence in distribution to uniform convergence

We present conditions that allow us to pass from the convergence of probability measures in distribution to the uniform convergence of the associated quantile functions. Under these conditions, one can in particular pass from the asymptotic distribution of collections of real numbers, such as the eigenvalues of a family of n-by-n matrices as n goes to infinity, to their uniform approximation by the values of the quantile function at equidistant points. For Hermitian Toeplitz-like matrices, convergence in distribution is ensured by theorems of the Szegő type. Our results transfer these convergence theorems into uniform convergence statements.

[1]  Carlo Garoni,et al.  A general tool for determining the asymptotic spectral distribution of Hermitian matrix-sequences , 2015 .

[2]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[3]  Albrecht Böttcher,et al.  Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols , 2015 .

[4]  Paolo Tilli,et al.  Locally Toeplitz sequences: spectral properties and applications , 1998 .

[5]  G. Szegő Beiträge zur Theorie der Toeplitzschen Formen , 1920 .

[6]  Stefano Serra Capizzano,et al.  A note on the ( regularizing ) preconditioning of g-Toeplitz sequences via g-circulants , 2012 .

[7]  E. E. Tyrtyshnikov A unifying approach to some old and new theorems on distribution and clustering , 1996 .

[8]  Pedro M. Crespo,et al.  Mass concentration in quasicommutators of Toeplitz matrices , 2007 .

[9]  Stefano Serra-Capizzano,et al.  The eigenvalue distribution of products of Toeplitz matrices – Clustering and attraction , 2010 .

[10]  Szegö Type Limit Theorems for Multidimensional Discrete Convolution Operators with Continuous Symbols , 2001 .

[11]  G. Szegő Beiträge zur Theorie der Toeplitzschen Formen , 1921 .

[12]  S. Serra Capizzano,et al.  Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .

[13]  G. Pólya,et al.  Problems and Theorems in Analysis I: Series. Integral Calculus. Theory of Functions , 1976 .

[14]  Giuseppe Fiorentino,et al.  C. G. preconditioning for Toeplitz matrices , 1993 .

[15]  Albrecht Böttcher,et al.  Spectral properties of banded Toeplitz matrices , 1987 .

[16]  Albrecht Böttcher,et al.  Maximum norm versions of the Szegő and Avram-Parter theorems for Toeplitz matrices , 2015, J. Approx. Theory.

[17]  William F. Trench An Elementary View of Weyl's Theory of Equal Distribution , 2012, Am. Math. Mon..

[18]  E. E. Tyrtyshnikov Influence of matrix operations on the distribution of Eigenvalues and singular values of Toeplitz matrices , 1994 .

[19]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[20]  P. Deift,et al.  Eigenvalues of Toeplitz matrices in the bulk of the spectrum , 2011, 1110.4089.

[21]  Некоторые применения матричного признака равнораспределенности@@@Some applications of a matrix criterion for equidistribution , 2001 .

[22]  G. Szegö Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion , 1915 .

[23]  E. Lesigne,et al.  Heads or tails , 2005 .

[24]  Albrecht Böttcher,et al.  Inside the eigenvalues of certain Hermitian Toeplitz band matrices , 2010, J. Comput. Appl. Math..

[25]  Stefano Serra Capizzano,et al.  Spectral Features and Asymptotic Properties for g-Circulants and g-Toeplitz Sequences , 2010, SIAM J. Matrix Anal. Appl..

[26]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .