Polylogarithm-Based Computation of Fano Resonance in Arrayed Dipole Scatterers

Efficient descriptions for Fano resonant properties of plasmonic arrays of nanoparticles could support selection of particle and array characteristics to achieve specific spectral outcomes. In cont...

[1]  Nader Engheta,et al.  Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines , 2006 .

[2]  Doyle,et al.  Optical properties of a suspension of metal spheres. , 1989, Physical review. B, Condensed matter.

[3]  Benjamin Gallinet,et al.  Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials , 2011, 1105.2503.

[4]  Larry D. Travis,et al.  T-matrix method and its applications to electromagnetic scattering by particles: A current perspective , 2010 .

[5]  Drew DeJarnette,et al.  Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays , 2012 .

[6]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[7]  Maria Minunni,et al.  Surface Plasmon Resonance Imaging: What Next? , 2012, The journal of physical chemistry letters.

[8]  Q. Gong,et al.  Tunable wavelength-division multiplexing based on metallic nanoparticle arrays. , 2010, Optics letters.

[9]  Steven G. Johnson,et al.  Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology , 2013 .

[10]  Drew DeJarnette,et al.  Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices , 2014 .

[11]  George C Schatz,et al.  Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. , 2004, The Journal of chemical physics.

[12]  Drew DeJarnette,et al.  Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry , 2012 .

[13]  G. Schatz,et al.  The Extinction Spectra of Silver Nanoparticle Arrays: Influence of Array Structure on Plasmon Resonance Wavelength and Width† , 2003 .

[14]  George C Schatz,et al.  Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. , 2004, The Journal of chemical physics.

[15]  Leonard Lewin,et al.  Polylogarithms and Associated Functions , 1981 .

[16]  C. P. Burrows,et al.  A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures , 2010 .

[17]  D. Wood The Computation of Polylogarithms , 1992 .

[18]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[19]  Harry A Atwater,et al.  Design Considerations for Plasmonic Photovoltaics , 2010, Advanced materials.

[20]  Benjamin Gallinet,et al.  Plasmonic radiance: probing structure at the Ångström scale with visible light. , 2013, Nano letters.

[21]  T. Ebbesen,et al.  Fano Resonances and Leakage Radiation for High-Resolution Plasmonic Sensing , 2012 .

[22]  L. Gunnarsson,et al.  Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics , 2009, Nanotechnology.

[23]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[24]  Alfons G. Hoekstra,et al.  The discrete dipole approximation: an overview and recent developments , 2007 .

[25]  Hong Ding,et al.  Metallic Nanostructures as Localized Plasmon Resonance Enhanced Scattering Probes for Multiplex Dark Field Targeted Imaging of Cancer Cells. , 2009, The journal of physical chemistry. C, Nanomaterials and interfaces.