On the uniqueness of strong solution to the incompressible Navier–Stokes equations with damping

Abstract In this paper, we show that the Cauchy problem of the incompressible Navier–Stokes equations with damping α | u | β − 1 u ( α > 0 ) has global strong solution for any β > 3 and the strong solution is unique when 3 β ⩽ 5 . This improves earlier results.

[1]  H. Triebel Theory Of Function Spaces , 1983 .

[2]  R. Kohn,et al.  Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .

[3]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[4]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[5]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[6]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[7]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[8]  D. Bresch,et al.  Existence of Global Weak Solutions for a 2D Viscous Shallow Water Equations and Convergence to the Quasi-Geostrophic Model , 2003 .

[9]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[10]  L. Hsiao Quasilinear Hyperbolic Systems and Dissipative Mechanisms , 1998 .

[11]  Quansen Jiu,et al.  Weak and strong solutions for the incompressible Navier–Stokes equations with damping , 2008 .

[12]  J. Serrin On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .

[13]  Pierre Gilles Lemarié-Rieusset,et al.  Recent Developments in the Navier-Stokes Problem , 2002 .

[14]  D. Bresch,et al.  On Some Compressible Fluid Models: Korteweg, Lubrication, and Shallow Water Systems , 2003 .

[15]  H. Sohr,et al.  The Navier-Stokes Equations: An Elementary Functional Analytic Approach , 2012 .

[16]  Claude Bardos,et al.  Mathematical Topics in Fluid Mechanics, Volume 1, Incompressible Models , 1998 .

[17]  E. Hopf,et al.  Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .

[18]  儀我 美一,et al.  Solutions for semilinear parabolic equations in L[p] and regularity of weak solutions of the Navier-Stokes system , 1985 .

[19]  Vladimir Sverak,et al.  L3,∞-solutions of the Navier-Stokes equations and backward uniqueness , 2003 .

[20]  Feimin Huang,et al.  Digital Object Identifier (DOI) 10.1007/s00205-002-0234-5 Convergence Rate for Compressible Euler Equations with Damping and Vacuum , 2022 .

[21]  Michael Struwe,et al.  On partial regularity results for the navier‐stokes equations , 1988 .

[22]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[23]  Yoshikazu Giga,et al.  Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .

[24]  H. Triebel Theory of Function Spaces III , 2008 .