Experimental Demonstration of OCDMA and OTDMA PONs with FEC and Burst-Mode Reception

Passive optical networks (PONs) are a promising economic solution in delivering data to the end-user. We demonstrate experimentally the uplink of a spectral-amplitude-coded optical code division multiple access (SACOCDMA) and an optical time division multiple access (OTDMA) PON, with burst-mode reception. The receiver performs clock and data recovery (CDR), phase acquisition and forward-error-correction (FEC). Using FEC we demonstrate an error-free 7x622 Mbps uplink of an incoherent SAC-OCDMA PON, while operating at a relatively low power of around -24 dBm. In going to from a back-to-back architecture to a local sources PON configuration the penalty introduced is less than 1 dB. We show that the burst-mode functionality of the receiver enables instantaneous phase acquisition and zero packet loss. However, it introduces a power penalty of around 1dB, which is the price to pay to accommodate bursty traffic and achieve instantaneous phase acquisition using zero bits of preamble.

[1]  P. Menendez-Valdes Performance of optical direct receivers using noise corrupted decision threshold , 1995 .

[2]  G. Vareille,et al.  1.5 terabit/s submarine 4000 km system validation over a deployed line with industrial margins using 25 GHz channel spacing and NRZ format over NZDSF , 2002, Optical Fiber Communication Conference and Exhibit.

[3]  W. Chujo,et al.  Highly spectral-efficient optical code-division multiplexing transmission system , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  J. Bauwelinck,et al.  A 1.25-gb/s burst-mode receiver for GPON applications , 2005, IEEE Journal of Solid-State Circuits.

[5]  D.V. Plant,et al.  622/1244 Mb/s Burst-Mode CDR for GPONs , 2006, LEOS 2006 - 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[6]  D.V. Plant,et al.  Effect of channel impairments on the performance of burst-mode receivers in gigabit PON , 2008, 2008 51st Midwest Symposium on Circuits and Systems.

[7]  D.V. Plant,et al.  A Standalone Burst-Mode Receiver With Clock and Data Recovery, Clock Phase Alignment, and RS(255, 239) Codes for SAC-OCDMA Applications , 2008, IEEE Photonics Technology Letters.

[8]  Paul R. Prucnal,et al.  Spread spectrum fiber-optic local area network using optical processing , 1986 .

[9]  Shen-Iuan Liu,et al.  A 10Gbps Burst-Mode CDR Circuit in 0.18μm CMOS , 2006, IEEE Custom Integrated Circuits Conference 2006.

[10]  Ivan Andonovic,et al.  Wavelength hopping/time spreading code division multiple access systems , 1994 .

[11]  I.B. Djordjevic,et al.  Low-density parity check codes for long-haul optical communication systems , 2002, IEEE Photonics Technology Letters.

[12]  P. R. Prucnal,et al.  All-serial coding architecture for ultrafast optical code-division multiple-access , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[13]  V. O'Byrne,et al.  FTTP deployments in the United States and Japan-equipment choices and service provider imperatives , 2005, Journal of Lightwave Technology.

[14]  D.V. Plant,et al.  Performance of Incoherent SAC-OCDMA Using a Burst-Mode Receiver with CDR and FEC , 2007, LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings.

[15]  Jen-Fa Huang,et al.  Two-dimensional M-matrices coding in spatial/frequency optical CDMA networks , 2003 .

[16]  D.V. Plant,et al.  A Standalone Receiver With Multiple Access Interference Rejection, Clock and Data Recovery, and FEC for 2-D$lambda -t$OCDMA , 2006, IEEE Photonics Technology Letters.

[17]  K. Kitayama,et al.  Ten-user truly asynchronous gigabit OCDMA transmission experiment with a 511-chip SSFBG en/decoder , 2006, Journal of Lightwave Technology.

[18]  Charles A. Eldering Theoretical determination of sensitivity penalty for burst mode: fiber optic receivers , 1993 .

[19]  A. Nishiki,et al.  10 Gb/s x 2 ch signal unrepeated transmission over 100 km of data rate enhanced time-spread/wavelength-hopping OCDM using 2.5-Gb/s-FBG en/decoder , 2003, IEEE Photonics Technology Letters.

[20]  Horst Zimmermann,et al.  Three-stage burst-mode transimpedance amplifier in deep-sub-/spl mu/m CMOS technology , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[21]  D.V. Plant,et al.  Experimental Demonstration of a SAC-OCDMA PON With Burst-Mode Reception: Local Versus Centralized Sources , 2008, Journal of Lightwave Technology.

[22]  David V Plant,et al.  Dual Architecture Uplink Demonstration of a 7×622 Mbps SAC-OCDMA PON Using a Burst-Mode Receiver , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[23]  Josep Prat,et al.  Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks , 2005 .

[24]  Biswanath Mukherjee,et al.  Ethernet passive optical networks , 2005 .

[25]  Masao Kasahara,et al.  A Method for Solving Key Equation for Decoding Goppa Codes , 1975, Inf. Control..

[26]  R. J. Baca,et al.  Transmission of eight channels/spl times/622 Mbit/s and 15 channels/spl times/155 Mbit/s using spectral encoded optical CDMA , 2001 .

[27]  D.L. Wilson,et al.  Concatenated FEC experiment over 5000 km long straight line WDM test bed , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[28]  Andrew J. Viterbi,et al.  An Intuitive Justification and a Simplified Implementation of the MAP Decoder for Convolutional Codes , 1998, IEEE J. Sel. Areas Commun..

[29]  Day-Uei Li,et al.  A 2.5 Gb/s CMOS Burst-Mode Limiting Amplifier for GPON System , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[30]  Paul R. Prucnal Optical Code Division Multiple Access : Fundamentals and Applications , 2005 .

[31]  M. Banu,et al.  Clock recovery circuits with instantaneous locking , 1992 .

[32]  Andrew J. Viterbi,et al.  Convolutional Codes and Their Performance in Communication Systems , 1971 .

[33]  Shen-Iuan Liu,et al.  A 2.5Gbps Burst-Mode Clock and Data Recovery Circuit , 2005, 2005 IEEE Asian Solid-State Circuits Conference.

[34]  Jin-Ku Kang,et al.  2× oversampling 2.5 Gbps clock and data recovery with phase picking method , 2003 .

[35]  R. Menges,et al.  2.4 Tb/s (120 /spl times/ 20 Gb/s) transmission over transoceanic distance using optimum FEC overhead and 48 % spectral efficiency , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[36]  Chang-Hee Lee,et al.  Fiber to the Home Using a PON Infrastructure , 2006, Journal of Lightwave Technology.

[37]  Sang-Gug Lee,et al.  Burst-mode receiver for 1.25Gb/s Ethernet PON with AGC and internally created reset signal , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[38]  Leslie A. Rusch,et al.  Experimental BER performance of 2D λ-t OCDMA with recovered clock , 2005 .

[39]  I. Reed,et al.  Polynomial Codes Over Certain Finite Fields , 1960 .

[40]  Ivan Glesk Demonstration of differentiated service provisioning with 4-node 253G chip/s fast frequency-hopping time-spreading OCDMA , 2004 .

[41]  K. Motoshima,et al.  Forward error correction based on block turbo code with 3-bit soft decision for 10-Gb/s optical communication systems , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[42]  A.J. Mendez,et al.  Temporal/spatial optical CDMA networks-design, demonstration, and comparison with temporal networks , 1992, IEEE Photonics Technology Letters.

[43]  Mohsen Kavehrad,et al.  Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources , 1995 .

[44]  P.R. Prucnal,et al.  Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating , 2006, IEEE Photonics Technology Letters.

[45]  Ken-ichi Kitayama,et al.  Novel spatial spread spectrum based fiber optic CDMA networks for image transmission , 1994, IEEE J. Sel. Areas Commun..

[46]  Moon-Sang Hwang,et al.  A 5 Gb/s 0.25 /spl mu/m CMOS jitter-tolerant variable-interval oversampling clock/data recovery circuit , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[47]  Naoya Wada,et al.  Demonstration of 12-user, 10.71 Gbps truly asynchronous OCDMA using FEC and a pair of multi-port optical-encoder/decoders , 2005 .

[48]  Shen-Iuan Liu,et al.  A 33.6-to-33.8Gb/s Burst-Mode CDR in 90nm CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[49]  S. Kobayashi,et al.  A multibitrate burst-mode CDR circuit with bit-rate discrimination function from 52 to 1244 Mb/s , 2001, IEEE Photonics Technology Letters.

[50]  Edward H. Sargent,et al.  Lighting the local area: optical code-division multiple access and quality of service provisioning , 2000, IEEE Netw..

[51]  Y. Umeda,et al.  1.25-Gb/s burst-mode receiver ICs with quick response for PON systems , 2005, IEEE Journal of Solid-State Circuits.

[52]  I.B. Djordjevic,et al.  Projective geometry LDPC codes for ultralong-haul WDM high-speed transmission , 2003, IEEE Photonics Technology Letters.

[53]  Guu-chang Yang,et al.  Two-dimensional spatial signature patterns , 1996, IEEE Trans. Commun..

[54]  P. W. Smith,et al.  Wavelength-encoding/temporal-spreading optical code division multiple-access system with in-fiber chirped moiré gratings. , 1999, Applied optics.

[55]  D. Plant,et al.  Burst-mode clock and data recovery in optical multiaccess networks using broad-band PLLs , 2006, IEEE Photonics Technology Letters.

[56]  R. G. Swartz,et al.  Burst-mode compatible optical receiver with a large dynamic range , 1990 .

[57]  A. B. Ruffin,et al.  Fiber-Based Broadband-Access Deployment in the United States , 2006, Journal of Lightwave Technology.

[58]  M. Zirngibl,et al.  An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access , 1998 .

[59]  J P Heritage,et al.  Encoding and decoding of femtosecond pulses. , 1988, Optics letters.

[60]  K. Kitayama,et al.  OCDMA over WDM PON-solution path to gigabit-symmetric FTTH , 2006, Journal of Lightwave Technology.

[61]  Beomsup Kim,et al.  A low-noise fast-lock phase-locked loop with adaptive bandwidth control , 2000, IEEE Journal of Solid-State Circuits.

[62]  Andrew M. Weiner,et al.  Coherent ultrashort light pulse code-division multiple access communication systems , 1990 .

[63]  R. G. Swartz,et al.  DC-1 Gb/s burst-mode compatible receiver for optical bus applications , 1992 .

[64]  J. Prat,et al.  RSOA-based optical network units for WDM-PON , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[65]  V.J. Hernandez,et al.  320-Gb/s Capacity (32 Users × 10 Gb/s) SPECTS O-CDMA Local Area Network Testbed , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[66]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[67]  Nabeel A. Riza,et al.  Spatial Optical CDMA , 1995, IEEE J. Sel. Areas Commun..

[68]  N. Park,et al.  A new family of space/wavelength/time spread three-dimensional optical code for OCDMA networks , 2000, Journal of Lightwave Technology.