The ‘when’ and ‘where’ of semantic coding in the anterior temporal lobe: Temporal representational similarity analysis of electrocorticogram data

Electrocorticograms (ECoG) provide a unique opportunity to monitor neural activity directly at the cortical surface. Ten patients with subdural electrodes covering ventral and lateral anterior temporal regions (ATL) performed a picture naming task. Temporal representational similarity analysis (RSA) was used, for the first time, to compare spatio-temporal neural patterns from the ATL surface with pre-defined theoretical models. The results indicate that the neural activity in the ventral subregion of the ATL codes semantic representations from 250 msec after picture onset. The observed activation similarity was not related to the visual similarity of the pictures or the phonological similarity of their names. In keeping with convergent evidence for the importance of the ATL in semantic processing, these results provide the first direct evidence of semantic coding from the surface of the ventral ATL and its time-course.

[1]  P. Dupont,et al.  Similarity of fMRI Activity Patterns in Left Perirhinal Cortex Reflects Semantic Similarity between Words , 2013, The Journal of Neuroscience.

[2]  P. Hoffman,et al.  Graded specialization within and between the anterior temporal lobes , 2015, Annals of the New York Academy of Sciences.

[3]  Matthew A. Lambon Ralph,et al.  Convergent Connectivity and Graded Specialization in the Rostral Human Temporal Lobe as Revealed by Diffusion-Weighted Imaging Probabilistic Tractography , 2012, Journal of Cognitive Neuroscience.

[4]  N. Martin,et al.  Lexical Retrieval Deficit in Picture Naming: Implications for Word Production Models , 1996, Brain and Language.

[5]  A. Caramazza,et al.  Conceptual Object Representations in Human Anterior Temporal Cortex , 2012, The Journal of Neuroscience.

[6]  Timothy T Rogers,et al.  Semantic memory is impaired in patients with unilateral anterior temporal lobe resection for temporal lobe epilepsy. , 2012, Brain : a journal of neurology.

[7]  F. Pulvermüller,et al.  Task modulation of brain responses in visual word recognition as studied using EEG/MEG and fMRI , 2013, Front. Hum. Neurosci..

[8]  B. Bahrami,et al.  Coming of age: A review of embodiment and the neuroscience of semantics , 2012, Cortex.

[9]  S. Thompson-Schill,et al.  Creating Concepts from Converging Features in Human Cortex. , 2015, Cerebral cortex.

[10]  T. Allison,et al.  Word recognition in the human inferior temporal lobe , 1994, Nature.

[11]  James L. McClelland,et al.  Why Bilateral Damage Is Worse than Unilateral Damage to the Brain , 2013, Journal of Cognitive Neuroscience.

[12]  Tom Hartley,et al.  Low-Level Image Properties of Visual Objects Predict Patterns of Neural Response across Category-Selective Regions of the Ventral Visual Pathway , 2014, The Journal of Neuroscience.

[13]  Hidenao Fukuyama,et al.  Left anterior temporal cortex actively engages in speech perception: A direct cortical stimulation study , 2011, Neuropsychologia.

[14]  T. Rogers,et al.  Where do you know what you know? The representation of semantic knowledge in the human brain , 2007, Nature Reviews Neuroscience.

[15]  Matthew H. Davis,et al.  Susceptibility-Induced Loss of Signal: Comparing PET and fMRI on a Semantic Task , 2000, NeuroImage.

[16]  A. Nobre,et al.  The anatomy and time course of semantic priming investigated by fMRI and ERPs , 2003, Neuropsychologia.

[17]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[18]  Patrick Dupont,et al.  Right fusiform response patterns reflect visual object identity rather than semantic similarity , 2013, NeuroImage.

[19]  Matthew A. Lambon Ralph,et al.  Neurocognitive insights on conceptual knowledge and its breakdown , 2014 .

[20]  Steven Z Rapcsak,et al.  Lexical retrieval and semantic knowledge in patients with left inferior temporal lobe lesions , 2008, Aphasiology.

[21]  Gunilla Borgefors,et al.  Hierarchical Chamfer Matching: A Parametric Edge Matching Algorithm , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  L. Barsalou Grounded cognition. , 2008, Annual review of psychology.

[23]  T. Rogers,et al.  Object categorization: reversals and explanations of the basic-level advantage. , 2007, Journal of experimental psychology. General.

[24]  M. L. Lambon Ralph,et al.  Category-Specific versus Category-General Semantic Impairment Induced by Transcranial Magnetic Stimulation , 2010, Current Biology.

[25]  E. Warrington Quarterly Journal of Experimental Psychology the Selective Impairment of Semantic Memory the Selective Impairment of Semantic Memory , 2022 .

[26]  Richard S. J. Frackowiak,et al.  Functional anatomy of a common semantic system for words and pictures , 1996, Nature.

[27]  A. Caramazza,et al.  Brain Regions That Represent Amodal Conceptual Knowledge , 2013, The Journal of Neuroscience.

[28]  W. Levelt Accessing words in speech production: Stages, processes and representations , 1992, Cognition.

[29]  T. Rogers,et al.  Neural basis of category-specific semantic deficits for living things: evidence from semantic dementia, HSVE and a neural network model. , 2006, Brain : a journal of neurology.

[30]  Andrew W. Ellis,et al.  Age of Acquisition Norms for a Large Set of Object Names and Their Relation to Adult Estimates and Other Variables , 1997 .

[31]  B. Mesquita,et al.  Adjustment to Chronic Diseases and Terminal Illness Health Psychology : Psychological Adjustment to Chronic Disease , 2006 .

[32]  Ellen F. Lau,et al.  Automatic Semantic Facilitation in Anterior Temporal Cortex Revealed through Multimodal Neuroimaging , 2013, The Journal of Neuroscience.

[33]  Nikos Makris,et al.  Large-scale brain networks of the human left temporal pole: a functional connectivity MRI study. , 2015, Cerebral cortex.

[34]  M. L. Lambon Ralph,et al.  Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. , 2006, Brain : a journal of neurology.

[35]  Matthew A. Lambon Ralph,et al.  Neurocognitive insights on conceptual knowledge and its breakdown , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[36]  P. Hoffman,et al.  The Roles of Left Versus Right Anterior Temporal Lobes in Conceptual Knowledge: An ALE Meta-analysis of 97 Functional Neuroimaging Studies , 2015, Cerebral cortex.

[37]  Irene P. Kan,et al.  Verb generation in patients with focal frontal lesions: a neuropsychological test of neuroimaging findings. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[38]  William W. Graves,et al.  Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. , 2009, Cerebral cortex.

[39]  Guido Gainotti,et al.  Is the difference between right and left ATLs due to the distinction between general and social cognition or between verbal and non-verbal representations? , 2015, Neuroscience & Biobehavioral Reviews.

[40]  Emily J. Mayberry,et al.  Coherent concepts are computed in the anterior temporal lobes , 2010, Proceedings of the National Academy of Sciences.

[41]  Taylor J. Abel,et al.  Direct Physiologic Evidence of a Heteromodal Convergence Region for Proper Naming in Human Left Anterior Temporal Lobe , 2015, The Journal of Neuroscience.

[42]  G. McCarthy,et al.  Language-related field potentials in the anterior-medial temporal lobe: II. Effects of word type and semantic priming , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  G. Ojemann,et al.  Famous face identification in temporal lobe epilepsy: Support for a multimodal integration model of semantic memory , 2013, Cortex.

[44]  James L. McClelland,et al.  Structure and deterioration of semantic memory: a neuropsychological and computational investigation. , 2004, Psychological review.

[45]  M. L. Lambon Ralph,et al.  Conceptual Structure within and between Modalities , 2012, Front. Hum. Neurosci..

[46]  P. Hoffman,et al.  Direct Exploration of the Role of the Ventral Anterior Temporal Lobe in Semantic Memory: Cortical Stimulation and Local Field Potential Evidence From Subdural Grid Electrodes , 2014, Cerebral cortex.

[47]  Eric Halgren,et al.  First-Pass Selectivity for Semantic Categories in Human Anteroventral Temporal Lobe , 2011, The Journal of Neuroscience.

[48]  A. Damasio,et al.  A neural basis for the retrieval of conceptual knowledge , 1997, Neuropsychologia.

[49]  H. Lüders,et al.  Functional connectivity in the human language system: a cortico-cortical evoked potential study. , 2004, Brain : a journal of neurology.

[50]  Pienie Zwitserlood,et al.  A Large N400 but No BOLD Effect – Comparing Source Activations of Semantic Priming in Simultaneous EEG-fMRI , 2013, PloS one.

[51]  R. Adolphs,et al.  Neural systems behind word and concept retrieval , 2004, Cognition.

[52]  Hugues Duffau,et al.  Stimulation mapping of white matter tracts to study brain functional connectivity , 2015, Nature Reviews Neurology.

[53]  Billi Randall,et al.  From perception to conception: how meaningful objects are processed over time. , 2013, Cerebral cortex.

[54]  A. Ikeda,et al.  Subtemporal Hippocampectomy Preserving the Basal Temporal Language Area for Intractable Mesial Temporal Lobe Epilepsy: Preliminary Results , 2006, Epilepsia.

[55]  Valerie A. Carr,et al.  Spatiotemporal Dynamics of Modality-Specific and Supramodal Word Processing , 2003, Neuron.

[56]  J. Hodges,et al.  Non-verbal semantic impairment in semantic dementia , 2000, Neuropsychologia.

[57]  K Herholz,et al.  Plasticity of language networks in patients with brain tumors: A positron emission tomography activation study , 2001, Annals of neurology.

[58]  E. Jefferies,et al.  Anterior temporal lobes mediate semantic representation: Mimicking semantic dementia by using rTMS in normal participants , 2007, Proceedings of the National Academy of Sciences.

[59]  H. Lüders,et al.  Basal temporal language area. , 1991, Brain : a journal of neurology.

[60]  Mark S. Seidenberg,et al.  Object naming and semantic knowledge in temporal lobe epilepsy. , 2001, Neuropsychology.

[61]  Elizabeth Jefferies,et al.  Semantic Processing in the Anterior Temporal Lobes: A Meta-analysis of the Functional Neuroimaging Literature , 2010, Journal of Cognitive Neuroscience.

[62]  H. Duffau Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity , 2005, The Lancet Neurology.

[63]  M. L. Lambon Ralph,et al.  The Neural Organization of Semantic Control: TMS Evidence for a Distributed Network in Left Inferior Frontal and Posterior Middle Temporal Gyrus , 2010, Cerebral cortex.

[64]  J. G. Snodgrass,et al.  A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. , 1980, Journal of experimental psychology. Human learning and memory.

[65]  J. S. Guntupalli,et al.  Decoding neural representational spaces using multivariate pattern analysis. , 2014, Annual review of neuroscience.

[66]  Song-Lin Ding,et al.  Parcellation of human temporal polar cortex: A combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers , 2009, The Journal of comparative neurology.

[67]  A. Damasio,et al.  A neural basis for lexical retrieval , 1996, Nature.

[68]  Rutvik H. Desai,et al.  The neurobiology of semantic memory , 2011, Trends in Cognitive Sciences.

[69]  Li Su,et al.  Spatiotemporal Searchlight Representational Similarity Analysis in EMEG Source Space , 2012, 2012 Second International Workshop on Pattern Recognition in NeuroImaging.

[70]  Elizabeth Jefferies,et al.  Going beyond Inferior Prefrontal Involvement in Semantic Control: Evidence for the Additional Contribution of Dorsal Angular Gyrus and Posterior Middle Temporal Cortex , 2013, Journal of Cognitive Neuroscience.

[71]  L. Tyler,et al.  Object-Specific Semantic Coding in Human Perirhinal Cortex , 2014, The Journal of Neuroscience.

[72]  Richard J. Binney,et al.  The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. , 2010, Cerebral cortex.

[73]  C. Wernicke,et al.  Wernicke's works on aphasia. A sourcebook and review , 1979, Medical History.

[74]  R P Lesser,et al.  Basal temporal language area demonstrated by electrical stimulation , 1986, Neurology.