Recent advances of stretched Gaussian distribution underlying Hausdorff fractal distance and its applications in fitting stretched Gaussian noise

[1]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[2]  C. Mallows,et al.  A Method for Simulating Stable Random Variables , 1976 .

[3]  T. Taguchi On a generalization of Gaussian distribution , 1978 .

[4]  J. Orcutt,et al.  Least-squares fitting of marine seismic refraction data , 1985 .

[5]  Peter Lancaster,et al.  Curve and surface fitting - an introduction , 1986 .

[6]  M. Varanasi,et al.  Parametric generalized Gaussian density estimation , 1989 .

[7]  H. Stanley,et al.  I Fractals and multifractals: the interplay of Physics and Geometry , 1991 .

[8]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[9]  Marco Lops,et al.  Canonical detection in spherically invariant noise , 1995, IEEE Trans. Commun..

[10]  Stephen M. Kogon,et al.  Signal modeling with self-similar α-stable processes: the fractional Levy stable motion model , 1996, IEEE Trans. Signal Process..

[11]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[12]  R. Adler,et al.  A practical guide to heavy tails: statistical techniques and applications , 1998 .

[13]  G. Mahmoud,et al.  On periodic solutions of parametrically excited complex non-linear dynamical systems , 2000 .

[14]  J. Pesquet,et al.  Wavelet thresholding for some classes of non–Gaussian noise , 2002 .

[15]  R. Gorenflo,et al.  Fractional diffusion: probability distributions and random walk models , 2002 .

[16]  M. Naber DISTRIBUTED ORDER FRACTIONAL SUB-DIFFUSION , 2003, math-ph/0311047.

[17]  Asoke K. Nandi,et al.  Exponent parameter estimation for generalized Gaussian probability density functions with application to speech modeling , 2005, Signal Process..

[18]  H. Wio,et al.  New aspects on current enhancement in Brownian motors driven by non-Gaussian noises , 2005 .

[19]  Joon-Hyuk Chang,et al.  Statistical modeling of speech signals based on generalized gamma distribution , 2005, IEEE Signal Process. Lett..

[20]  W. Chen Time-space fabric underlying anomalous diffusion , 2005, math-ph/0505023.

[21]  Lahouari Ghouti,et al.  Digital image watermarking using balanced multiwavelets , 2006, IEEE Transactions on Signal Processing.

[22]  Lorenzo Bruzzone,et al.  Image thresholding based on the EM algorithm and the generalized Gaussian distribution , 2007, Pattern Recognit..

[23]  Enrico Grosso,et al.  Generalized Gaussian distributions for sequential data classification , 2008, 2008 19th International Conference on Pattern Recognition.

[24]  R. Gallager Principles of Digital Communication , 2008 .

[25]  Robert Schober,et al.  Performance of BICM-SC and BICM-OFDM systems with diversity reception in non-gaussian noise and interference , 2009, IEEE Transactions on Communications.

[26]  M. Ostoja-Starzewski,et al.  Fractal solids, product measures and fractional wave equations , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  Yoshihiko Hasegawa,et al.  Properties of the maximum q-likelihood estimator for independent random variables , 2009 .

[28]  Hongguang Sun,et al.  Anomalous diffusion modeling by fractal and fractional derivatives , 2010, Comput. Math. Appl..

[29]  Wen Chen,et al.  Investigation on Fractional and Fractal Derivative Relaxation- Oscillation Models , 2010 .

[30]  Seyed Mohammad Ahadi,et al.  A Logarithmic Quantization Index Modulation for Perceptually Better Data Hiding , 2010, IEEE Transactions on Image Processing.

[31]  Tülay Adali,et al.  A Complex Generalized Gaussian Distribution— Characterization, Generation, and Estimation , 2010, IEEE Transactions on Signal Processing.

[32]  Manoj Gupta,et al.  Image De-noising by Various Filters for Different Noise , 2010 .

[33]  N. Bouguila,et al.  Enhanced IR face recognition using Bayesian unsupervised algorithm , 2010 .

[34]  W. Stahel,et al.  Problems with Using the Normal Distribution – and Ways to Improve Quality and Efficiency of Data Analysis , 2011, PloS one.

[35]  Yang Xiao-Jun Local Fractional Functional Analysis and Its Applications , 2011 .

[36]  David M. Boore,et al.  Estimating Unknown Input Parameters when Implementing the NGA Ground-Motion Prediction Equations in Engineering Practice , 2011 .

[37]  Mounir Ghogho,et al.  Outage Probability Based Power Distribution Between Data and Artificial Noise for Physical Layer Security , 2012, IEEE Signal Processing Letters.

[38]  Xiao‐Jun Yang,et al.  Fractal heat conduction problem solved by local fractional variation iteration method , 2013 .

[39]  Leo Liberti,et al.  Euclidean Distance Geometry and Applications , 2012, SIAM Rev..

[40]  Ji-Huan He A Tutorial Review on Fractal Spacetime and Fractional Calculus , 2014 .

[41]  V. E. Tarasov Anisotropic fractal media by vector calculus in non-integer dimensional space , 2014, 1503.02392.

[42]  A. Mignan Modeling aftershocks as a stretched exponential relaxation , 2015, 1510.01180.

[43]  Kazuhiko Hamamoto,et al.  Optimum watermark detection of ultrasonic echo medical images , 2015 .

[44]  Xiaogang Li,et al.  A new model for gas–water two-immiscible-phase transport in fractal-like porous media , 2015 .

[45]  Fan Jun Wei Denoise in the pseudopolar grid Fourier space using exact inverse pseudopolar Fourier transform , 2015, ArXiv.

[46]  C. Bai,et al.  A wavevector filter in inversion symmetric Weyl semimetal , 2016 .

[47]  F. Ding,et al.  Gradient-based iterative identification methods for multivariate pseudo-linear moving average systems using the data filtering , 2016 .

[48]  Richard L. Magin,et al.  A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging , 2016, Commun. Nonlinear Sci. Numer. Simul..

[49]  Andrey G. Cherstvy,et al.  Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes. , 2016, Physical chemistry chemical physics : PCCP.

[50]  Wen Chen,et al.  Characterizing the creep of viscoelastic materials by fractal derivative models , 2016 .

[51]  Wen Chen,et al.  Three-dimensional Hausdorff derivative diffusion model for isotropic/anisotropic fractal porous media , 2017 .

[52]  Wen Chen,et al.  Time-fractional derivative model for chloride ions sub-diffusion in reinforced concrete , 2017 .

[53]  Ramy Hussein,et al.  Robust Feature Extraction and Classification of Acoustic Partial Discharge Signals Corrupted With Noise , 2017, IEEE Transactions on Instrumentation and Measurement.

[54]  Xiaole Yue,et al.  Transports in a rough ratchet induced by Lévy noises. , 2017, Chaos.

[55]  Alcides J. Leguto,et al.  Hurst exponent: A Brownian approach to characterize the nonlinear behavior of red blood cells deformability , 2017 .

[56]  Wen Chen,et al.  Feasibility study on the least square method for fitting non-Gaussian noise data , 2017, 1705.01451.

[57]  J. Machado,et al.  A new fractional operator of variable order: Application in the description of anomalous diffusion , 2016, 1611.09200.

[58]  Wen Chen,et al.  Non-Euclidean distance fundamental solution of Hausdorff derivative partial differential equations , 2017 .

[59]  Qingsong Hua,et al.  A simple empirical formula of origin intensity factor in singular boundary method for two-dimensional Hausdorff derivative Laplace equations with Dirichlet boundary , 2018, Comput. Math. Appl..

[60]  Hongguang Sun,et al.  Stretched exponential stability of nonlinear Hausdorff dynamical systems , 2018 .

[61]  J. H. Cushman,et al.  A spatial structural derivative model for the characterization of superfast diffusion/dispersion in porous media , 2019, International Journal of Heat and Mass Transfer.

[62]  HongGuang Sun,et al.  Distributed order Hausdorff derivative diffusion model to characterize non-Fickian diffusion in porous media , 2019, Commun. Nonlinear Sci. Numer. Simul..

[63]  R. Donahoe,et al.  Quantifying colloid fate and transport through dense vegetation and soil systems using a particle-plugging tempered fractional-derivative model. , 2019, Journal of contaminant hydrology.

[64]  R. Magin,et al.  A Survey of Models of Ultraslow Diffusion in Heterogeneous Materials , 2019, Applied Mechanics Reviews.

[65]  Wen Chen,et al.  HAUSDORFF DERIVATIVE MODEL FOR CHARACTERIZATION OF NON-FICKIAN MIXING IN FRACTAL POROUS MEDIA , 2018, Fractals.