Transient probability functions of finite birth–death processes with catastrophes

[1]  G. Reuter,et al.  Spectral theory for the differential equations of simple birth and death processes , 1954, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  B. Noble Applied Linear Algebra , 1969 .

[3]  C. J. Stone,et al.  Introduction to Stochastic Processes , 1972 .

[4]  Carl M. Harris,et al.  Fundamentals of queueing theory , 1975 .

[5]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .

[6]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[7]  Bradley W. Jackson,et al.  Applied Combinatorics With Problem Solving , 1989 .

[8]  W. J. Anderson Continuous-Time Markov Chains: An Applications-Oriented Approach , 1991 .

[9]  W. J. Anderson Continuous-Time Markov Chains , 1991 .

[10]  P. Turner,et al.  Numerical methods and analysis , 1992 .

[11]  Sri Gopal Mohanty,et al.  On the transient behavior of a finite birth-death process with an application , 1993, Comput. Oper. Res..

[12]  John T. Scheick Linear Algebra With Applications , 1996 .

[13]  Masaaki Kijima,et al.  Markov processes for stochastic modeling , 1997 .

[14]  B. Krishna Kumar,et al.  Transient solution of an M/M/1 queue with catastrophes , 2000 .

[15]  Virginia Giorno,et al.  On the M/M/1 Queue with Catastrophes and Its Continuous Approximation , 2003, Queueing Syst. Theory Appl..

[16]  Xiuli Chao,et al.  TRANSIENT ANALYSIS OF IMMIGRATION BIRTH–DEATH PROCESSES WITH TOTAL CATASTROPHES , 2003, Probability in the Engineering and Informational Sciences.

[17]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[18]  Gerardo Rubino,et al.  Connections Between Birth-Death Processes , 2003 .

[19]  Gerardo Rubino,et al.  Transient Probability Functions: A Sample Path Approach , 2003, DRW.

[20]  Gerardo Rubino,et al.  Dual processes to solve single server systems , 2005 .

[21]  A. Krinik,et al.  Birth-multiple catastrophe processes , 2007 .