Isolation and identification of indigenous organic acid-producing microorganisms for tungsten dissolution from Hutti gold mine overburden sample

[1]  D. Pradhan Biodissolution of metal values from complex sulfides using sulfur-oxidizing bacteria , 2022, Materials Today: Proceedings.

[2]  N. Pradhan,et al.  Tungsten Dissolution from Hutti Goldmine Overburden by Aspergillus niger , 2022, Geomicrobiology Journal.

[3]  P. Rohit,et al.  Cloning, expression, purification and characterization of chitin deacetylase extremozyme from halophilic Bacillus aryabhattai B8W22 , 2021, 3 Biotech.

[4]  Wenyu Yang,et al.  Growth Promotion Ability of Phosphate Solubilizing Bacteria from the Soybean Rhizosphere under Maize-Soybean Intercropping Systems. , 2021, Journal of the science of food and agriculture.

[5]  Sudhir Kumar,et al.  Bioleaching of metals from waste printed circuit boards using bacterial isolates native to abandoned gold mine , 2021, BioMetals.

[6]  L. B. Sukla,et al.  Evaluation of molybdenum recovery from sulfur removed spent catalyst using leaching and solvent extraction , 2020, Scientific Reports.

[7]  R. Sahoo,et al.  Parameter optimization for thermostable lipase production and performance evaluation as prospective detergent additive , 2020, Preparative biochemistry & biotechnology.

[8]  T. Pedron,et al.  Isolation and characterization of bacteria from a brazilian gold mining area with a capacity of arsenic bioaccumulation. , 2020, Chemosphere.

[9]  M. Arshadi,et al.  Optimized bioleaching of copper by indigenous cyanogenic bacteria isolated from the landfill of e-waste. , 2020, Journal of environmental management.

[10]  K. Barry,et al.  Production of lactic and acetic acids by Bacillus sp. ZM20 and Bacillus cereus following exposure to zinc oxide: A possible mechanism for Zn solubilization , 2019 .

[11]  M. Albu,et al.  Biotransformation of Scheelite CaWO4 by the Extreme Thermoacidophile Metallosphaera sedula: Tungsten–Microbial Interface , 2019, Front. Microbiol..

[12]  M. Noaparast,et al.  Dissolution of Al from metakaolin with carboxylic acids produced by Aspergillus niger, Penicillium bilaji, Pseudomonas putida, and Pseudomonas koreensis , 2019, Hydrometallurgy.

[13]  Y. Kaci,et al.  Isolation and identification of a phosphate-solubilizing Paenibacillus polymyxa strain GOL 0202 from durum wheat (Triticum durum Desf.) rhizosphere and its effect on some seedlings morphophysiological parameters , 2019, Biocatalysis and Agricultural Biotechnology.

[14]  A. Akcil,et al.  Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) - A review. , 2019, Journal of hazardous materials.

[15]  Minghua Zhou,et al.  Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. , 2018, Bioresource technology.

[16]  Gaosen Zhang,et al.  Bioleaching of copper- and zinc-bearing ore using consortia of indigenous iron-oxidizing bacteria , 2018, Extremophiles.

[17]  Megan J. Barnett,et al.  Comparison of Heterotrophic Bioleaching and Ammonium Sulfate Ion Exchange Leaching of Rare Earth Elements from a Madagascan Ion-Adsorption Clay , 2018, Minerals.

[18]  A. Tkaczyk,et al.  Sustainability evaluation of essential critical raw materials: cobalt, niobium, tungsten and rare earth elements , 2018 .

[19]  O. Ezeokoli,et al.  Tolerance and growth kinetics of bacteria isolated from gold and gemstone mining sites in response to heavy metal concentrations. , 2018, Journal of environmental management.

[20]  R. Carlson,et al.  In a Quest for Engineering Acidophiles for Biomining Applications: Challenges and Opportunities , 2018, Genes.

[21]  Vipin Kumar,et al.  Effects of organochlorine pesticides on plant growth-promoting traits of phosphate-solubilizing rhizobacterium, Paenibacillus sp. IITISM08 , 2018, Environmental Science and Pollution Research.

[22]  Sudhir Kumar,et al.  Bioleaching of Gold and Silver from Waste Printed Circuit Boards by Pseudomonas balearica SAE1 Isolated from an e-Waste Recycling Facility , 2018, Current Microbiology.

[23]  C. Nascimento,et al.  Bioleaching of electronic waste using bacteria isolated from the marine sponge Hymeniacidon heliophila (Porifera). , 2017, Journal of hazardous materials.

[24]  Suchhanda Ghosh,et al.  Heterotrophic leaching of metals from Indian chromite mining overburden , 2017 .

[25]  A. Balestrazzi,et al.  Metal Leaching and Reductive Dissolution of Iron from Contaminated Soil and Sediment Samples by Indigenous Bacteria and Bacillus Isolates , 2016 .

[26]  L. B. Sukla,et al.  Molecular identification of indigenous manganese solubilising bacterial biodiversity from manganese mining deposits , 2016, Journal of basic microbiology.

[27]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[28]  P. C. Banerjee,et al.  Bioleaching of Nickel and Cobalt from Lateritic Chromite Overburden Using the Culture Filtrate of Aspergillus niger , 2013, Applied Biochemistry and Biotechnology.

[29]  W. Ludwig,et al.  Comparative phylobiomic analysis of the bacterial community of water kefir by 16S rRNA gene amplicon sequencing and ARDRA analysis , 2013, Journal of applied microbiology.

[30]  N. Pradhan,et al.  Recovery of nickel from chromite overburden, Sukinda using Aspergillus niger supplemented with manganese , 2013, Korean Journal of Chemical Engineering.

[31]  S. Yaghmaei,et al.  Recovery of metals from spent refinery hydrocracking catalyst using adapted Aspergillus niger , 2011 .

[32]  M. Kundu,et al.  Dissolution kinetics of nickel laterite ore using different secondary metabolic acids , 2011 .

[33]  Dong-Jin Kim,et al.  Dissolution Kinetics of Complex Sulfides Using Acidophilic Microorganisms , 2010 .

[34]  K. Bosecker,et al.  Bioleaching: metal solubilization by microorganisms , 1997 .

[35]  P. Vos,et al.  Applicability of combined amplified ribosomal DNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy , 1996 .

[36]  N Krishna Rao,et al.  Beneficiation of tungsten ores in India: A review , 1996 .

[37]  R. N. Kar,et al.  Microbial leaching of lateritic nickel ore , 1993, World journal of microbiology & biotechnology.

[38]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[39]  L. B. Sukla,et al.  Microbial mechanism of metal sulfide dissolution , 2020 .

[40]  A. Kaksonen,et al.  Biosolubilisation of Metals and Metalloids , 2017 .

[41]  A. Paul,et al.  Bioleaching of nickel by Aspergillus humicola SKP102 isolated from Indian lateritic overburden , 2016, Journal of Sustainable Mining.

[42]  S. M. Mousavi,et al.  Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum. , 2011, Bioresource technology.

[43]  G. Gadd Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. , 1999, Advances in microbial physiology.

[44]  R. A. G. Carvalho,et al.  Bioleaching of tungsten ores , 1990 .